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1

Input, Output, and
Conversions

Learn how to import and export videos, and perform color space and video
image conversions.

• “Export to Video Files” on page 1-2

• “Import from Video Files” on page 1-4

• “Batch Process Image Files” on page 1-7

• “Display a Sequence of Images” on page 1-9

• “Partition Video Frames to Multiple Image Files” on page 1-12

• “Combine Video and Audio Streams” on page 1-18

• “Import MATLAB Workspace Variables” on page 1-20

• “Transmit Audio and Video Content Over Network” on page 1-22

• “Resample Image Chroma” on page 1-24

• “Convert Intensity to Binary Images” on page 1-29

• “Convert R’G’B’ to Intensity Images” on page 1-41

• “Process Multidimensional Color Video Signals” on page 1-46

• “Data Formats” on page 1-51



1 Input, Output, and Conversions

Export to Video Files
The Computer Vision System Toolbox™ blocks enable you to export video
data from your Simulink® model. In this example, you use the To Multimedia
File block to export a multimedia file from your model. This example also uses
Gain blocks from the Math Operations Simulink library.

You can open the example model by typing

ex_export_to_mmf

at the MATLAB® command line.

1 Run your model.

2 You can view your video in the To Video Display window.

By increasing the red, green, and blue color values, you increase the contrast
of the video. The To Multimedia File block exports the video data from the
Simulink model to a multimedia file that it creates in your current folder.

This example manipulated the video stream and exported it from a Simulink
model to a multimedia file. For more information, see the To Multimedia File
block reference page.
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Export to Video Files

Setting Block Parameters for this Example
The block parameters in this example were modified from default values as
follows:

Block Parameter

Gain The Gain blocks are used to increase the red, green,
and blue values of the video stream. This increases
the contrast of the video:

• Main pane, Gain = 1.2

• Signal Attributes pane, Output data type =
Inherit: Same as input

To Multimedia File The To Multimedia File block exports the video to
a multimedia file:

• Output file name = my_output.avi

• Write = Video only

• Image signal = Separate color signals

Configuration Parameters
You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example,
the parameters on the Solver pane, are set as follows:

• Stop time = 20

• Type = Fixed-step

• Solver = Discrete (no continuous states)
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1 Input, Output, and Conversions

Import from Video Files
In this example, you use the From Multimedia File source block to import a
video stream into a Simulink model and the To Video Display sink block to
view it. This procedure assumes you are working on a Windows platform.

You can open the example model by typing

ex_import_mmf

at the MATLAB command line.

1 Run your model.

2 View your video in the To Video Display window that automatically
appears when you start your simulation.

Note The video that is displayed in the To Video Display window runs at
the frame rate that corresponds to the input sample time. To run the video
as fast as Simulink processes the video frames, use the Video Viewer block.

You have now imported and displayed a multimedia file in the Simulink
model. In the “Export to Video Files” on page 1-2 example you can manipulate
your video stream and export it to a multimedia file.
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Import from Video Files

For more information on the blocks used in this example, see the From
Multimedia File and To Video Display block reference pages.

Setting Block Parameters for this Example
The block parameters in this example were modified from default values as
follows:

Block Parameter

From Multimedia
File

Use the From Multimedia File block to import the
multimedia file into the model:

• If you do not have your own multimedia file, use
the default vipmen.avi file, for the File name
parameter.

• If the multimedia file is on your MATLAB path,
enter the filename for the File name parameter.

• If the file is not on your MATLAB path, use the
Browse button to locate the multimedia file.

• Set the Image signal parameter to Separate
color signals.

By default, the Number of times to play file
parameter is set to inf. The model continues to play
the file until the simulation stops.

To Video Display Use the To Video Display block to view the
multimedia file.

• Image signal: Separate color signals

Set this parameter from the Settings menu of the
display viewer.

1-5



1 Input, Output, and Conversions

Configuration Parameters
You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example,
the parameters on the Solver pane, are set as follows:

• Stop time = 20

• Type = Fixed-step

• Solver = Discrete (no continuous states)

1-6



Batch Process Image Files

Batch Process Image Files
A common image processing task is to apply an image processing algorithm
to a series of files. In this example, you import a sequence of images from a
folder into the MATLAB workspace.

Note In this example, the image files are a set of 10 microscope images of rat
prostate cancer cells. These files are only the first 10 of 100 images acquired.

1 Specify the folder containing the images, and use this information to create
a list of the file names, as follows:

fileFolder = fullfile(matlabroot,'toolbox','images','imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirOutput.name}'

2 View one of the images, using the following command sequence:

I = imread(fileNames{1});
imshow(I);
text(size(I,2),size(I,1)+15, ...

'Image files courtesy of Alan Partin', ...
'FontSize',7,'HorizontalAlignment','right');

text(size(I,2),size(I,1)+25, ....
'Johns Hopkins University', ...
'FontSize',7,'HorizontalAlignment','right');

3 Use a for loop to create a variable that stores the entire image sequence.
You can use this variable to import the sequence into Simulink.

for i = 1:length(fileNames)
my_video(:,:,i) = imread(fileNames{i});

end

For additional information about batch processing, see the Batch Processing
Image Files Using Distributed Computing example in Image Processing
Toolbox. You can run the example by typing ipexbatch at the MATLAB
command prompt.
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Configuration Parameters
You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example,
the parameters on the Solver pane, are set as follows:

• Stop time = 10

• Type = Fixed-step

• Solver = Discrete (no continuous states)

1-8



Display a Sequence of Images

Display a Sequence of Images
This example displays a sequence of images, which were saved in a folder,
and then stored in a variable in the MATLAB workspace. At load time, this
model executes the code from the “Batch Process Image Files” on page 1-7
example, which stores images in a workspace variable.

You can open the example model by typing

ex_display_sequence_of_images

at the MATLAB command line.

1 The Video From Workspace block reads the files from the MATLAB
workspace. The Signal parameter is set to the name of the variable for the
stored images. For this example, it is set to my_video.

2 The Video Viewer block displays the sequence of images.

3 Run your model. You can view the image sequence in the Video Viewer
window.
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4 Because the Video From Workspace block’s Sample time parameter is set
to 1 and the Stop time parameter in the configuration parameters, is set to
10, the Video Viewer block displays 10 images before the simulation stops.

Pre-loading Code
To find or modify the pre-loaded code, select File > Model Properties >
Model Properties. Then select the Callbacks tab. For more details on how
to set-up callbacks, see “Callbacks for Customized Model Behavior”.
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Configuration Parameters
You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example,
the parameters on the Solver pane, are set as follows:

• Stop time = 10

• Type = Fixed-step

• Solver = Discrete (no continuous states)
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Partition Video Frames to Multiple Image Files
In this example, you use the To Multimedia File block, the Enabled Subsystem
block, and a trigger signal, to save portions of one AVI file to three separate
AVI files.

You can open the example model with the link below or by typing

ex_vision_partition_video_frames_to_multiple_files

at the MATLAB command line.

1 Run your model.

2 The model saves the three output AVI files in your current folder.

3 View the resulting files by typing the following commands at the MATLAB
command prompt:

mplay output1.avi
mplay output2.avi
mplay output3.avi

4 Press the Play button on the MPlay GUI.

For more information on the blocks used in this example, see the From
Multimedia File, Insert Text, Enabled Subsystem, and To Multimedia File
block reference pages.

Setting Block Parameters for this Example
The block parameters in this example were modified from default values as
follows:
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Block Parameter

From Multimedia
File

The From Multimedia File block imports an AVI file
into the model.

• Cleared Inherit sample time from file checkbox.

Insert Text The example uses the Insert Text block to annotate
the video stream with frame numbers. The block
writes the frame number in green, in the upper-left
corner of the output video stream.

• Text: 'Frame %d'

• Color: [0 1 0]

• Location: [10 10]

To Multimedia
File

The To Multimedia File blocks send the video stream
to three separate AVI files. These block parameters
were modified as follows:

• Output file name: output1.avi, output2.avi,
and output3.avi, respectively

• Write: Video only

Counter The Counter block counts the number of video
frames. The example uses this information to specify
which frames are sent to which file. The block
parameters are modified as follows:

• Number of bits: 8

• Sample time: 1/30
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Block Parameter

Bias The bias block adds a bias to the input. The block
parameters are modified as follows:

• Bias: 1

Compare to
Constant

The Compare to Constant block sends frames 1 to
9 to the first AVI file. The block parameters are
modified as follows:

• Operator: <

• Constant value: 10

Compare to
Constant1
Compare to
Constant2

The Compare to Constant1 and Compare to
Constant2 blocks send frames 10 to 19 to the second
AVI file. The block parameters are modified as
follows:

• Operator: >=

• Constant value: 10

The Compare to Constant2 block parameters are
modified as follows:

• Operator: <

• Constant value: 20
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Block Parameter

Compare to
Constant3

The Compare to Constant3 block send frames 20 to
30 to the third AVI file. The block parameters are
modified as follows:

• Operator: >=

• Constant value: 20

Compare to
Constant4

The Compare to Constant4 block stopa the
simulation when the video reaches frame 30. The
block parameters are modified as follows:

• Operator: ==

• Constant value: 30

• Output data type mode: boolean

Using the Enabled Subsystem Block
Each To Multimedia File block gets inserted into one Enabled Subsystem
block, and connected to it’s input. You can do this, by double-clicking the
Enabled Subsystem blocks, then click-and-drag a To Multimedia File block
into it.

Each enabled subsystem should look similar to the subsystem shown in the
following figure.
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Configuration Parameters
You can locate the Model Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. For this example,
the parameters on the Solver pane, are set as follows:

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)
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Combine Video and Audio Streams
In this example, you use the From Multimedia File blocks to import video and
audio streams into a Simulink model. You then write the audio and video to
a single file using the To Multimedia File block.

You can open the example model by typing

ex_combine_video_and_audio_streams

on the MATLAB command line.

1 Run your model. The model creates a multimedia file called output.avi in
your current folder.

2 Play the multimedia file using a media player. The original video file now
has an audio component to it.

Setting Up the Video Input Block
The From Multimedia File block imports a video file into the model. During
import, the Inherit sample time from file check box is deselected, which
enables the Desired sample time parameter. The other default parameters
are accepted.

The From Multimedia File block used for the input video file inherits its
sample time from the vipmen.avi file. For video signals, the sample time
equals the frame period. The frame period is defined as 1/(frame rate).
Because the input video frame rate is 30 frames per second (fps), the block
sets the frame period to 1/30 or 0.0333 seconds per frame.

Setting Up the Audio Input Block
The From Multimedia File1 block imports an audio file into the model.

The Samples per audio frame parameter is set to 735. This output audio
frame size is calculated by dividing the frequency of the audio signal (22050
samples per second) by the frame rate (approximately 30 frames per second).

You must adjust the audio signal frame period to match the frame period of
the video signal. The video frame period is 0.0333 seconds per frame. Because
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the frame period is also defined as the frame size divided by frequency, you
can calculate the frame period of the audio signal by dividing the frame size of
the audio signal (735 samples per frame) by the frequency (22050 samples per
second) to get 0.0333 seconds per frame.

frame period = (frame size)/(frequency)
frame period = (735 samples per frame)/(22050 samples per second)
frame period = 0.0333 seconds per frame

Alternatively, you can verify that the frame period of the audio and video
signals is the same using a Simulink Probe block.

Setting Up the Output Block
The To Multimedia File block is used to output the audio and video signals
to a single multimedia file. The Video and audio option is selected for the
Write parameter and One multidimensional signal for the Image signal
parameter. The other default parameters are accepted.

Configuration Parameters
You can locate the Configuration Parameters by selecting Model
Configuration Parameters from the Simulation menu. The parameters,
on the Solver pane, are set as follows:

• Stop time = 10

• Type = Fixed-step

• Solver = Discrete (no continuous states)

1-19



1 Input, Output, and Conversions

Import MATLAB Workspace Variables
You can import data from the MATLAB workspace using the Video From
Workspace block, which is created specifically for this task.
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Use the Signal parameter to specify the MATLAB workspace variable from
which to read. For more information about how to use this block, see the
Video From Workspace block reference page.
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Transmit Audio and Video Content Over Network
MATLAB and Simulink support network streaming via the Microsoft® MMS
protocol (which is also known as the ASF, or advanced streaming format,
protocol). This ability is supported on Windows® operating systems. If you
are using other operating systems, you can use UDP to transport your media
streams. If you are using Simulink, use the To Multimedia File and From
Multimedia File blocks. If you are using MATLAB, use the VideoFileWriter
and the VideoFileReader System objects. It is possible to encode and view
these streams with other applications.

In order to view an MMS stream generated by MATLAB, you should use
Internet Explorer®, and provide the URL (e.g. "mms://127.0.0.1:81") to the
stream which you wish to read. If you wish to create an MMS stream which
can be viewed by MATLAB, download the Windows Media® Encoder or
Microsoft Expression Encoder application, and configure it to produce a
stream on a particular port (e.g. 81). Then, specify that URL in the Filename
field of the From Multimedia File block or VideoFileReader System object™.

You cannot send and receive MMS streams from the same process. If you wish
to send and receive, the sender or the receiver must be run in rapid accelerator
mode or compiled as a separate application using Simulink Coder™.

If you run the “Transmit Audio and Video Over a Network” on page 1-22
example with sendReceive set to 'send', you can open up Internet Explorer
and view the URL on which you have set up a server. By default, you should
go to the following URL: mms://127.0.0.1:80. If you run this example with
sendReceive set to 'receive', you will be able to view a MMS stream on the
local computer on port 81. This implies that you will need to set up a stream
on this port using software such as the Windows Media Encoder (which may
be downloaded free of charge from Microsoft).

Transmit Audio and Video Over a Network
This example shows how to specify parameters to transmit audio and video
over a network.

Specify the sendReceive parameter to either ‘send’ to write the stream to the
network or ‘receive’ to read the stream from the network.
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sendReceive = 'send';
url = 'mms://127.0.0.1:81';
filename = 'vipmen.avi';

Either send or receive the stream, as specified.

if strcmpi(sendReceive, 'send')
% Create objects
hSrc = vision.VideoFileReader(filename);
hSnk = vision.VideoFileWriter;

% Set parameters
hSnk.FileFormat = 'WMV';
hSnk.AudioInputPort = false;
hSnk.Filename = url;

% Run loop. Ctrl-C to exit
while true

data = step(hSrc);
step(hSnk, data);

end

else
% Create objects
hSrc = vision.VideoFileReader;
hSnk = vision.DeployableVideoPlayer;

% Set parameters
hSrc.Filename = url;

% Run loop. Ctrl-C to exit
while true

data = step(hSrc);
step(hSnk, data);

end
end
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Resample Image Chroma
In this example, you use the Chroma Resampling block to downsample the Cb
and Cr components of an image. The Y’CbCr color space separates the luma
(Y’) component of an image from the chroma (Cb and Cr) components. Luma
and chroma, which are calculated using gamma corrected R, G, and B (R’, G’,
B’) signals, are different quantities than the CIE chrominance and luminance.
The human eye is more sensitive to changes in luma than to changes in
chroma. Therefore, you can reduce the bandwidth required for transmission
or storage of a signal by removing some of the color information. For this
reason, this color space is often used for digital encoding and transmission
applications.

You can open the example model by typing

ex_vision_resample_image_chroma

on the MATLAB command line.
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1 Define an RGB image in the MATLAB workspace. To do so, at the
MATLAB command prompt, type:

I= imread('autumn.tif');
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This command reads in an RGB image from a TIF file. The image I is a
206-by-345-by-3 array of 8-bit unsigned integer values. Each plane of this
array represents the red, green, or blue color values of the image.

2 To view the image this array represents, at the MATLAB command
prompt, type:

imshow(I)

3 Configure Simulink to display signal dimensions next to each signal line.
Select Display > Signals & Ports > Signal Dimensions.

4 Run your model. The recovered image appears in the Video Viewer
window. The Chroma Resampling block has downsampled the Cb and
Cr components of an image.

5 Examine the signal dimensions in your model. The Chroma Resampling
block downsamples the Cb and Cr components of the image from 206-by-346
matrices to 206-by-173 matrices. These matrices require less bandwidth
for transmission while still communicating the information necessary to
recover the image after it is transmitted.

Setting Block Parameters for This Example
The block parameters in this example are modified from default values as
follows:

Block Parameter

Image from
Workspace

Import your image from the MATLAB workspace. Set
the Value parameter to I.

Image Pad Change dimensions of the input I array from
206-by-345-by-3 to 206-by-346-by-3. You are changing
these dimensions because the Chroma Resampling block
requires that the dimensions of the input be divisible by
2. Set the block parameters as follows:

• Method = Symmetric

• Add columns to = Right

• Number of added columns = 1
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Block Parameter

• Add row to = No padding

The Image Pad block adds one column to the right of
each plane of the array by repeating its border values.
This padding minimizes the effect of the pixels outside
the image on the processing of the image.

Note When you process video streams, be aware that it
is computationally expensive to pad every video frame.
You should change the dimensions of the video stream
before you process it with Computer Vision System
Toolbox blocks.

Selector,
Selector1,
Selector2

Separate the individual color planes from the main
signal. Such separation simplifies the color space
conversion section of the model. Set the Selector block
parameters as follows:Selector1

• Number of input dimensions = 3

• Index 1 = Select all

• Index 2 = Select all

• Index 3 = Index vector (dialog) and Index = 1

Selector2

• Number of input dimensions = 3

• Index 1 = Select all

• Index 2 = Select all

• Index 3 = Index vector (dialog) and Index = 2

Selector2

• Number of input dimensions = 3

1-27



1 Input, Output, and Conversions

Block Parameter

• Index 1 = Select all

• Index 2 = Select all

• Index 3 = Index vector (dialog) and Index = 3

Color Space
Conversion

Convert the input values from the R’G’B’ color space
to the Y’CbCr color space. The prime symbol indicates
a gamma corrected signal. Set the Image signal
parameter to Separate color signals.

Chroma
Resampling

Downsample the chroma components of the image from
the 4:4:4 format to the 4:2:2 format. Use the default
parameters. The dimensions of the output of the Chroma
Resampling block are smaller than the dimensions of
the input. Therefore, the output signal requires less
bandwidth for transmission.

Chroma
Resampling1

Upsample the chroma components of the image from the
4:2:2 format to the 4:4:4 format. Set the Resampling
parameter to 4:2:2 to 4:4:4.

Color Space
Conversion1

Convert the input values from the Y’CbCr color space
to the R’G’B’ color space. Set the block parameters as
follows:
• Conversion = Y'CbCr to R'G'B'

• Image signal = Separate color signals

Video Viewer Display the recovered image. Select File>Image signal
to set Image signal to Separate color signals.

Configuration Parameters
Open the Configuration dialog box by selecting Model Configuration
Parameters from the Simulation menu. Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)
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Convert Intensity to Binary Images
Binary images contain Boolean pixel values that are either 0 or 1. Pixels
with the value 0 are displayed as black; pixels with the value 1 are displayed
as white. Intensity images contain pixel values that range between the
minimum and maximum values supported by their data type. Binary images
can contain only 0s and 1s, but they are not binary images unless their data
type is Boolean.“Thresholding Intensity Images Using Relational Operators”
on page 1-29

Thresholding Intensity Images Using Relational
Operators
You can use the Relational Operator block to perform a thresholding operation
that converts your intensity image to a binary image. This example shows
you how to accomplish this task.

You can open the example model by typing

ex_vision_thresholding_intensity

on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System
Toolbox > Sources

1

Video Viewer Computer Vision System
Toolbox > Sinks

2

Relational Operator Simulink > Logic and Bit
Operations

1

Constant Simulink > Sources 1

2 Use the Image from File block to import your image. In this example the
image file is a 256-by-256 matrix of 8-bit unsigned integer values that
range from 0 to 255. Set the File name parameter to rice.png
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3 Use the Video Viewer1 block to view the original intensity image. Accept
the default parameters.

4 Use the Constant block to define a threshold value for the Relational
Operator block. Since the pixel values range from 0 to 255, set the
Constant value parameter to 128. This value is image dependent.

5 Use the Relational Operator block to perform a thresholding operation
that converts your intensity image to a binary image. Set the Relational
Operator parameter to >. If the input to the Relational Operator block
is greater than 128, its output is a Boolean 1; otherwise, its output is
a Boolean 0.

6 Use the Video Viewer block to view the binary image. Accept the default
parameters.

7 Connect the blocks as shown in the following figure.
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8 Set the configuration parameters. Open the Configuration dialog box by
selecting Simulation > Model Configuration Parameters menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)
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9 Run your model.

The original intensity image appears in the Video Viewer1 window.

The binary image appears in the Video Viewer window.
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Note A single threshold value was unable to effectively threshold this
image due to its uneven lighting. For information on how to address this
problem, see “Correct Nonuniform Illumination” on page 7-8.

You have used the Relational Operator block to convert an intensity image
to a binary image. For more information about this block, see the Relational
Operator block reference page in the Simulink documentation. For additional
information, see “Converting Between Image Types” in the Image Processing
Toolbox documentation.
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Thresholding Intensity Images Using the
Autothreshold Block
In the previous topic, you used the Relational Operator block to convert an
intensity image into a binary image. In this topic, you use the Autothreshold
block to accomplish the same task. Use the Autothreshold block when lighting
conditions vary and the threshold needs to change for each video frame.

Note Running this example requires a DSP System Toolbox™ license.

ex_vision_autothreshold

1 If the model you created in “Thresholding Intensity Images Using
Relational Operators” on page 1-29 is not open on your desktop, you can
open the model by typing

ex_vision_thresholding_intensity

at the MATLAB command prompt.
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2 Use the Image from File block to import your image. In this example the
image file is a 256-by-256 matrix of 8-bit unsigned integer values that
range from 0 to 255. Set the File name parameter to rice.png

3 Delete the Constant and the Relational Operator blocks in this model.

4 Add an Autothreshold block from the Conversions library of the Computer
Vision System Toolbox into your model.
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5 Use the Autothreshold block to perform a thresholding operation that
converts your intensity image to a binary image. Select the Output
threshold check box. This block outputs the calculated threshold value
at the Th port.

6 Add a Display block from the Sinks library of the DSP System Toolbox
library. Connect the Display block to the Th output port of the
Authothreshold block.

Your model should look similar to the following figure:
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7 Double-click the Image From File block. On the Data Types pane, set the
Output data type parameter to double.

8 If you have not already done so, set the configuration parameters. Open the
Configuration dialog box by selectingModel Configuration Parameters
from the Simulation menu. Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step
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• Solver pane, Solver = Discrete (no continuous states)

9 Run the model.

The original intensity image appears in the Video Viewer1 window.

The binary image appears in the Video Viewer window.
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In the model window, the Display block shows the threshold value,
calculated by the Autothreshold block, that separated the rice grains from
the background.
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You have used the Autothreshold block to convert an intensity image to a
binary image. For more information about this block, see the Autothreshold
block reference page in the Computer Vision System Toolbox Reference. To
open an example model that uses this block, type vipstaples at the MATLAB
command prompt.
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Convert R’G’B’ to Intensity Images
The Color Space Conversion block enables you to convert color information
from the R’G’B’ color space to the Y’CbCr color space and from the Y’CbCr
color space to the R’G’B’ color space as specified by Recommendation ITU-R
BT.601-5. This block can also be used to convert from the R’G’B’ color space to
intensity. The prime notation indicates that the signals are gamma corrected.

Some image processing algorithms are customized for intensity images. If
you want to use one of these algorithms, you must first convert your image
to intensity. In this topic, you learn how to use the Color Space Conversion
block to accomplish this task. You can use this procedure to convert any
R’G’B’ image to an intensity image:

ex_vision_convert_rgb

1 Define an R’G’B’ image in the MATLAB workspace. To read in an R’G’B’
image from a JPG file, at the MATLAB command prompt, type

I= imread('greens.jpg');

I is a 300-by-500-by-3 array of 8-bit unsigned integer values. Each plane of
this array represents the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command
prompt, type

imshow(I)
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3 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Computer Vision System
Toolbox > Sources

1

Color Space
Conversion

Computer Vision System
Toolbox > Conversions

1

Video Viewer Computer Vision System
Toolbox > Sinks

2

4 Use the Image from Workspace block to import your image from the
MATLAB workspace. Set theValue parameter to I.
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5 Use the Color Space Conversion block to convert the input values from the
R’G’B’ color space to intensity. Set the Conversion parameter to R'G'B'
to intensity.

6 View the modified image using the Video Viewer block. View the original
image using the Video Viewer1 block. Accept the default parameters.

7 Connect the blocks so that your model is similar to the following figure.
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8 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

9 Run your model.

The image displayed in the Video Viewer window is the intensity version
of the greens.jpg image.
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In this topic, you used the Color Space Conversion block to convert color
information from the R’G’B’ color space to intensity. For more information on
this block, see the Color Space Conversion block reference page.

1-45



1 Input, Output, and Conversions

Process Multidimensional Color Video Signals
The Computer Vision System Toolbox software enables you to work with
color images and video signals as multidimensional arrays. For example,
the following model passes a color image from a source block to a sink block
using a 384-by-512-by-3 array.

ex_vision_process_multidimensional
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You can choose to process the image as a multidimensional array by setting
the Image signal parameter to One multidimensional signal in the Image
From File block dialog box.

The blocks that support multidimensional arrays meet at least one of the
following criteria:

• They have the Image signal parameter on their block mask.

• They have a note in their block reference pages that says, “This block
supports intensity and color images on its ports.”

• Their input and output ports are labeled “Image”.
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You can also choose to work with the individual color planes of images or
video signals. For example, the following model passes a color image from a
source block to a sink block using three separate color planes.

ex_vision_process_individual
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To process the individual color planes of an image or video signal, set the
Image signal parameter to Separate color signals in both the Image
From File and Video Viewer block dialog boxes.
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Note The ability to output separate color signals is a legacy option. It is
recommend that you use multidimensional signals to represent color data.

If you are working with a block that only outputs multidimensional arrays,
you can use the Selector block to separate the color planes. For an example of
this process, see Measure an Angle Between Lines. If you are working with
a block that only accepts multidimensional arrays, you can use the Matrix
Concatenation block to create a multidimensional array. For an example of
this process, see Find the Histogram of an Image.
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Data Formats

In this section...

“Video Formats” on page 1-51

“Video Data Stored in Column-Major Format” on page 1-52

“Image Formats” on page 1-52

Video Formats
Video data is a series of images over time. Video in binary or intensity format
is a series of single images. Video in RGB format is a series of matrices
grouped into sets of three, where each matrix represents an R, G, or B plane.

Defining Intensity and Color
Video data is a series of images over time. Video in binary or intensity format
is a series of single images. Video in RGB format is a series of matrices
grouped into sets of three, where each matrix represents an R, G, or B plane.

The values in a binary, intensity, or RGB image can be different data types.
The data type of the image values determines which values correspond to
black and white as well as the absence or saturation of color. The following
table summarizes the interpretation of the upper and lower bound of each
data type. To view the data types of the signals at each port, from the Display
menu, point to Signals & Ports, and select Port Data Types.

Data Type
Black or Absence of
Color

White or Saturation
of Color

Fixed point Minimum data type
value

Maximum data type
value

Floating point 0 1

Note The Computer Vision System Toolbox software considers any data
type other than double-precision floating point and single-precision floating
point to be fixed point.
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For example, for an intensity image whose image values are 8-bit unsigned
integers, 0 is black and 255 is white. For an intensity image whose image
values are double-precision floating point, 0 is black and 1 is white. For an
intensity image whose image values are 16-bit signed integers, -32768 is
black and 32767 is white.

For an RGB image whose image values are 8-bit unsigned integers, 0 0 0
is black, 255 255 255 is white, 255 0 0 is red, 0 255 0 is green, and 0 0 255
is blue. For an RGB image whose image values are double-precision
floating point, 0 0 0 is black, 1 1 1 is white, 1 0 0 is red, 0 1 0 is green,
and 0 0 1 is blue. For an RGB image whose image values are 16-bit
signed integers, -32768 -32768 -32768 is black, 32767 32767 32767 is
white, 32767 -32768 -32768 is red, -32768 32767 -32768 is green, and
-32768 -32768 32767 is blue.

Video Data Stored in Column-Major Format
The MATLAB technical computing software and Computer Vision System
Toolbox blocks use column-major data organization. The blocks’ data buffers
store data elements from the first column first, then data elements from the
second column second, and so on through the last column.

If you have imported an image or a video stream into the MATLAB workspace
using a function from the MATLAB environment or the Image Processing
Toolbox, the Computer Vision System Toolbox blocks will display this
image or video stream correctly. If you have written your own function or
code to import images into the MATLAB environment, you must take the
column-major convention into account.

Image Formats
In the Computer Vision System Toolbox software, images are real-valued
ordered sets of color or intensity data. The blocks interpret input matrices as
images, where each element of the matrix corresponds to a single pixel in the
displayed image. Images can be binary, intensity (grayscale), or RGB. This
section explains how to represent these types of images.
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Binary Images
Binary images are represented by a Boolean matrix of 0s and 1s, which
correspond to black and white pixels, respectively.

For more information, see “Binary Images” in the Image Processing Toolbox™
documentation.

Intensity Images
Intensity images are represented by a matrix of intensity values. While
intensity images are not stored with colormaps, you can use a gray colormap
to display them.

For more information, see “Grayscale Images” in the Image Processing
Toolbox documentation.

RGB Images
RGB images are also known as a true-color images. With Computer Vision
System Toolbox blocks, these images are represented by an array, where the
first plane represents the red pixel intensities, the second plane represents
the green pixel intensities, and the third plane represents the blue pixel
intensities. In the Computer Vision System Toolbox software, you can
pass RGB images between blocks as three separate color planes or as one
multidimensional array.

For more information, see “Truecolor Images” in the Image Processing
Toolbox documentation.
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2 Display and Graphics

Display

In this section...

“View Streaming Video in MATLAB” on page 2-2

“Preview Video in MATLAB using MPlay Function” on page 2-2

“To Video Display Block” on page 2-3

“View Video with MPlay” on page 2-4

“MPlay” on page 2-7

View Streaming Video in MATLAB

Video Player System Object
Use the video player System object when you require a simple video display
in MATLAB.

For more information about the video player object, see the
vision.VideoPlayer reference page.

Deployable Video Player System Object
Use the deployable video player object as a basic display viewer designed for
optimal performance. This block supports code generation for the Windows
platform.

For more information about the Deployable Video Player block, see the
vision.DeployableVideoPlayer object reference page.

Preview Video in MATLAB using MPlay Function
The MPlay function enables you to view videos represented as variables in the
MATLAB workspace.

You can open several instances of the MPlay function simultaneously to view
multiple video data sources at once. You can also dock these MPlay GUIs in
the MATLAB desktop. Use the figure arrangement buttons in the upper-right
corner of the Sinks window to control the placement of the docked GUIs.
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The MPlay GUI enables you to view videos directly from files without having
to load all the video data into memory at once. The following procedure shows
you how to use the MPlay GUI to load and view a video one frame at a time:

1 On the MPlay GUI, click open file icon,

2 Use the Connect to File dialog box to navigate to the multimedia file you
want to view in the MPlay window.

Click Open. The first frame of the video appears in the MPlay window.

Note The MPlay GUI supports AVI files that the VideoReader supports.

3 Experiment with the MPlay GUI by using it to play and interact with the
video stream.

View Video with Simulink Blocks

Video Viewer Block
Use the Video Viewer block when you require a wired-in video display with
simulation controls in your Simulink model. The Video Viewer block provides
simulation control buttons directly from the GUI. The block integrates play,
pause, and step features while running the model and also provides video
analysis tools such as pixel region viewer.

For more information about the Video Viewer block, see the Video Viewer
block reference page.

To Video Display Block
Use the To Video Display block in your Simulink model as a simple display
viewer designed for optimal performance. This block supports code generation
for the Windows platform.

For more information about the To Video Display block, see the To Video
Display block reference page.
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View Video with MPlay
The MPlay GUI enables you to view video signals in Simulink models without
adding blocks to your model.

You can open several instances of the MPlay GUI simultaneously to view
multiple video data sources at once. You can also dock these MPlay GUIs in
the MATLAB desktop. Use the figure arrangement buttons in the upper-right
corner of the Sinks window to control the placement of the docked GUIs.

Set Simulink simulation mode to Normal to use mplay . MPlay does not work
when you use “Accelerating Simulink Models” on page 9-23.

The following procedure shows you how to use MPlay to view a Simulink
signal:

1 Open a Simulink model. At the MATLAB command prompt, type

vipmplaytut
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2 Open an MPlay GUI by typing mplay on the MATLAB command line.

3 Run the model.

4 Select the signal line you want to view. For example, select the bus signal
coming out of the Rotate block.

5 On the MPlay GUI, click Connect to Simulink Signal GUI element,

The video appears in the MPlay window.
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6 Change to floating-scope mode by clicking the persistent connect GUI

element, button.

7 Experiment with selecting different signals and viewing them in the
MPlay window. You can also use multiple MPlay GUIs to display different
Simulink signals.

Note During code generation, the Simulink Coder does not generate code for
the MPlay GUI.
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MPlay
The following figure shows the MPlay GUI containing an image sequence.

The following sections provide descriptions of the MPlay GUI toolbar buttons
and equivalent menu options.
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Toolbar Buttons

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

File > New
MPlay

Ctrl+N Open a new MPlay GUI.

File > Print Ctrl+P Print the current display
window. Printing is only
available when the display
is not changing. You can
enable printing by placing the
display in snapshot mode, or
by pausing or stopping model
simulation, or simulating the
model in step-forward mode.

To print the current window
to a figure rather than
sending it to your printer,
select File > Print to figure.

File > Print Ctrl+P Print the current scope
window. Printing is only
available when the scope
display is not changing. You
can enable printing by placing
the scope in snapshot mode,
or by pausing or stopping
model simulation.

To print the current scope
window to a figure rather
than sending it to your
printer, select File > Print
to figure.

File > Open Ctrl+O Connect to a video file.
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GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

File >
Import from
Workspace

Ctrl+I Connect to a variable from the
base MATLAB workspace.

File >
Connect to
Simulink
Signal

Connect to a Simulink signal.

File > Export
to Image Tool

Ctrl+E Send the current video
frame to the Image Tool.
For more information, see
“Using the Image Viewer
App to Explore Images” in
the Image Processing Toolbox
documentation.
The Image Tool only knows
the frame is an intensity
image if the colormap of
the frame is grayscale
(gray(256)). Otherwise, the
Image Tool assumes that the
frame is an indexed image
and disables the Adjust
Contrast button.

Tools > Video
Information

V View information about the
video data source.

Tools > Pixel
Region

N/A Open the Pixel Region
tool. For more information
about this tool, see the
Image Processing Toolbox
documentation.

Tools > Zoom
In

N/A Zoom in on the video display.
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GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Tools > Zoom
Out

N/A Zoom out of the video display.

Tools > Pan N/A Move the image displayed in
the GUI.

Tools >
Maintain Fit
to Window

N/A Scale video to fit GUI size
automatically. Toggle the
button on or off.

N/A N/A Enlarge or shrink the video
display. This option is
available if you do not select
theMaintain Fit toWindow
button.

Playback Toolbar — Workspace and File Sources

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Playback >
Go to First

F, Home Go to the first frame of the
video.

Playback >
Rewind

Up arrow Jump back ten frames.

Playback >
Step Back

Left arrow, Page
Up

Step back one frame.

Playback >
Stop

S Stop the video.

Playback >
Play

P, Space bar Play the video.

Playback >
Pause

P, Space bar Pause the video. This button
appears only when the video
is playing.
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GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Playback
> Step
Forward

Right arrow, Page
Down

Step forward one frame.

Playback >
Fast Forward

Down arrow Jump forward ten frames.

Playback >
Go to Last

L, End Go to the last frame of the
video.

Playback >
Jump to

J Jump to a specific frame.

Playback >
Playback
Modes >
Repeat

R Repeated video playback.

Playback >
Playback
Modes >
Forward play

A Play the video forward.

Playback >
Playback
Modes >
Backwardplay

A Play the video backward.

Playback >
Playback
Modes >
AutoReverse
play

A Play the video forward and
backward.
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Playback Toolbar — Simulink Sources

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Simulation >
Stop

S Stop the video. This button
also controls the Simulink
model.

Simulation >
Start

P, Space bar Play the video. This button
also controls the Simulink
model.

Simulation >
Pause

P, Space bar Pause the video. This button
also controls the Simulink
model and appears only when
the video is playing.

Simulation
> Step
Forward

Right arrow, Page
Down

Step forward one frame.
This button also controls the
Simulink model.

Simulation
> Simulink
Snapshot

N/A Click this button to freeze the
display in the MPlay window.

View >
Highlight
Simulink
Signal

Ctrl+L In the model window,
highlight the Simulink
signal the MPlay GUI is
displaying.

Simulation
> Floating
Signal
Connection
(not selected)

N/A Indicates persistent Simulink
connection. In this mode, the
MPlay GUI always associates
with the Simulink signal you
selected before you clicked
the Connect to Simulink
Signal button.

Simulation
> Floating
Signal

N/A Indicates floating Simulink
connection. In this mode, you
can click different signals in
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GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Connection
(selected)

the model, and the MPlay
GUI displays them. You can
use only one MPlay GUI in
floating-scope mode at a time.

Configuration

The MPlay Configuration dialog box enables you to change the behavior and
appearance of the GUI as well as the behavior of the playback shortcut keys.

• To open the Configuration dialog box, select File > Configuration
Set > Edit.

• To save the configuration settings for future use, select
File > Configuration Set > Save as.

Note By default, the MPlay GUI uses the configuration settings from the
file mplay.cfg. Create a backup copy of the file to store your configuration
settings.

• To load a preexisting configuration set, select File > Configuration
Set > Load.

Configuration Core Pane

The Core pane controls the graphic user interface (GUI) general and source
settings.
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General UI
Click General UI, and then select the Options button to open the General
UI Options dialog box.

If you select the Display the full source path in the title bar check box,
the full Simulink path appears in the title bar. Otherwise, the title bar
displays a shortened name.

Use the Message log opens parameter to control when the Message log
window opens. You can use this window to debug issues with video playback.
Your choices are for any new messages, for warn/fail messages, only
for fail messages, or manually.
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Source UI
Click Source UI, and then click the Options button to open the Source UI
Options dialog box.

If you select the Keyboard commands respect playback modes check
box, the keyboard shortcut keys behave in response to the playback mode
you selected.

Using the Keyboard commands respect playback modes

Open and play a video using MPlay.

1 Select the Keyboard commands respect playback modes check box.

2 Select the Backward playback button.

• Using the right keyboard arrow key moves the video backward, and
using the left keyboard arrow key moves the video forward.

• With MPlay set to play backwards, the keyboard “forward” performs
“forward with the direction the video is playing”.

To disconnect the keyboard behavior from the MPlay playback settings, clear
the check box.

Use the Recently used sources list parameter to control the number of
sources you see in the File menu.
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Configuration Sources Pane

The Sources pane contains the GUI options that relate to connecting to
different sources. Select the Enabled check box next to each source type to
specify to which type of source you want to connect the GUI.

• Click File, and then click the Options button to open the Sources:File
Options dialog box.

Use the Default open file path parameter to control the folder that is
displayed in the Connect to File dialog box. The Connect to File dialog
box becomes available when you select File > Open.
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• Click Simulink, and then click the Options button to open the
Sources:Simulink Options dialog box.

You can have the Simulink model associated with an MPlay GUI to open
with MPlay. To do so, select the Load Simulink model if not open check
box.

Select Signal lines only to sync the video display only when you select
a signal line. If you select a block the video display will not be affected.
Select Signal lines or blocks to sync the video display to the signal line or
block you select. The default is Signal lines only.

Configuration Visuals Pane

The Visuals pane contains the name of the visual type and its description.
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Configuration Tools Pane

The Tools pane contains the tools that are available on the MPlay GUI. Select
the Enabled check box next to the tool name to specify which tools to include
on the GUI.
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Click Image Tool, and then click the Options button to open the Image
Tool Options dialog box.

Select the Open new Image Tool window for export check box if you want
to open a new Image Tool for each exported frame.

Pixel Region
Select the Pixel Region check box to display and enable the pixel region GUI
button. For more information on working with pixel regions, see Getting
Information about the Pixels in an Image.

Image Navigation Tools
Select the Image Navigation Tools check box to enable the pan-and-zoom
GUI button.

Instrumentation Set
Select the Instrumentation Set check box to enable the option to load and
save viewer settings. The option appears in the File menu.

Video Information

The Video Information dialog box lets you view basic information about the
video. To open this dialog box, select Tools > Video Information or click

the information button .
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Color Map for Intensity Video

The Colormap dialog box lets you change the colormap of an intensity video.
You cannot access the parameters on this dialog box when the GUI displays
an RGB video signal. To open this dialog box for an intensity signal, select
Tools > Colormap or press C.

Use the Colormap parameter to specify the colormap to apply to the intensity
video.
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Sometimes, the pixel values do not use the entire data type range. In such
cases, you can select the Specify range of displayed pixel values check
box. You can then enter the range for your data. The dialog box automatically
displays the range based on the data type of the pixel values.

Frame Rate

The Frame Rate dialog box displays the frame rate of the source. It also lets
you change the rate at which the MPlay GUI plays the video and displays the
actual playback rate.

Note This dialog box becomes available when you use the MPlay GUI to
view a video signal.

The playback rate is the number of frames the GUI processes per second. You
can use the Desired playback rate parameter to decrease or increase the
playback rate. To open this dialog box, select Playback > Frame Rate or
press T.

To increase the playback rate when system hardware cannot keep pace
with the desired rate, select the Allow frame drop to achieve desired
playback rate check box. This parameter enables the MPlay GUI to achieve
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the playback rate by dropping video frames. Dropped video frames sometimes
cause lower quality playback.

You can refine further the quality of playback versus hardware burden, by
controlling the number of frames to drop per frame or frames displayed.
For example, suppose you set the Desired playback rate to 80 frames/sec.
One way to achieve the desired playback rate is to set the Playback schedule
to Show 1 frame, Drop 3 frames. Change this playback schedule, by
setting the refresh rates (which is how often the GUI updates the screen), to:

Maximum refresh rate: 21 frames/sec
Minimum refresh rate: 20 frames/sec

MPlay can achieve the desired playback rate (in this case, 80 frames/sec)
by using these parameter settings.

In general, the relationship between the Frame Drop parameters is:
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Desired rate refresh rate
show frames drop frames

show fram
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In this case, the refresh_rate includes a more accurate calculation based on
both the minimum and maximum refresh rates.

Use the Minimum refresh rate and Maximum refresh rate parameters
to adjust the playback schedule of video display. Use these parameters in
the following way:

• Increase the Minimum refresh rate parameter to achieve smoother
playback.

• Decrease the Maximum refresh rate parameter to reduce the demand
on system hardware.

Saving the Settings of Multiple MPlay GUIs

The MPlay GUI enables you to save and load the settings of multiple GUI
instances. You only have to configure the MPlay GUIs associated with your
model once.

To save the GUI settings:

• Select File > Instrumentation Sets > Save Set

To open the preconfigured MPlay GUIs:

• Select File > Instrumentation Sets > Load Set

You can save instrument sets for instances of MPlay connected to a source.
If you attempt to save an instrument set for an MPlay instance that is not
connected to a source, the Message Log displays a warning.

Message Log

The Message Log dialog box provides a system level record of configurations
and extensions used. You can filter what messages to display by Type and
Category, view the records, and display record details.
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• The Type parameter allows you to select either All, Info, Warn, or Fail
message logs.

• The Category parameter allows you to select either Configuration or
Extension message summaries.

• The Configuration message indicates a new configuration file loaded.

• The Extension message indicates a registered component. For example,
a Simulink message, indicating a registered component, available for
configuration.

Status Bar

Along the bottom of the MPlay viewer is the status bar. It displays
information, such as video status, Type of video playing (I or RGB), Frame size,
Percentage of frame rate, Frame rate, and Current frame: Total frames.

Note A minus sign (-) for Current frame indicates reverse video playback.
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In this section...

“Abandoned Object Detection” on page 2-25

“Abandoned Object Detection” on page 2-31

“Annotate Video Files with Frame Numbers” on page 2-37

“Draw Shapes and Lines” on page 2-40

Abandoned Object Detection
This example shows how to track objects at a train station and to determine
which ones remain stationary. Abandoned objects in public areas concern
authorities since they might pose a security risk. Algorithms, such as the one
used in this example, can be used to assist security officers monitoring live
surveillance video by directing their attention to a potential area of interest.

This example illustrates how to use the Blob Analysis and MATLAB Function
blocks to design a custom tracking algorithm. The example implements
this algorithm using the following steps: 1) Eliminate video areas that are
unlikely to contain abandoned objects by extracting a region of interest (ROI).
2) Perform video segmentation using background subtraction. 3) Calculate
object statistics using the Blob Analysis block. 4) Track objects based on their
area and centroid statistics. 5) Visualize the results.

Watch the Abandoned Object Detection example.

Example Model

The following figure shows the Abandoned Object Detection example model.
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Store Background Subsystem

This example uses the first frame of the video as the background. To improve
accuracy, the example uses both intensity and color information for the
background subtraction operation. During this operation, Cb and Cr color
channels are stored in a complex array.

If you are designing a professional surveillance system, you should implement
a more sophisticated segmentation algorithm.
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Detect Subsystem

The Detect subsystem contains the main algorithm. Inside this subsystem,
the Luminance Segmentation and Color Segmentation subsystems perform
background subtraction using the intensity and color data. The example
combines these two segmentation results using a binary OR operator. The
Blob Analysis block computes statistics of the objects present in the scene.

Abandoned Object Tracker subsystem, shown below, uses the object statistics
to determine which objects are stationary. To view the contents of this
subsystem, right-click the subsystem and select Look Under Mask. To view
the tracking algorithm details, double-click the Abandoned Object Tracker
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block. The MATLAB code in this block is an example of how to implement your
custom code to augment Computer Vision System Toolbox™ functionality.

Abandoned Object Detection Results

The All Objects window marks the region of interest (ROI) with a yellow box
and all detected objects with green boxes.
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The Threshold window shows the result of the background subtraction in
the ROI.
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The Abandoned Objects window highlights the abandoned objects with a
red box.
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Abandoned Object Detection
This example shows how to track objects at a train station and it determines
which ones remain stationary. Abandoned objects in public areas concern
authorities since they might pose a security risk. Algorithms, such as the one
used in this example, can be used to assist security officers monitoring live
surveillance video by directing their attention to a potential area of interest.

This example illustrates how to use the BlobAnalysis System object to identify
objects and track them. The example implements this algorithm using the
following steps:

• Extract a region of interest (ROI), thus eliminating video areas that are
unlikely to contain abandoned objects.

• Perform video segmentation using background subtraction.

• Calculate object statistics using the blob analysis System object.

• Track objects based on their area and centroid statistics.
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• Visualize the results.

Initialize Required Variables and System Objects

Use these next sections of code to initialize the required variables and System
objects.

Rectangular ROI [x y width height], where [x y] is the uppef left corner of
the ROI

roi = [100 80 360 240];
% Maximum number of objects to track
maxNumObj = 200;
% Number of frames that an object must remain stationary before an alarm is
% raised
alarmCount = 45;
% Maximum number of frames that an abandoned object can be hidden before it
% is no longer tracked
maxConsecutiveMiss = 4;
areaChangeFraction = 13; % Maximum allowable change in object area in p
centroidChangeFraction = 18; % Maximum allowable change in object centroid
% Minimum ratio between the number of frames in which an object is detected
% and the total number of frames, for that object to be tracked.
minPersistenceRatio = 0.7;
% Offsets for drawing bounding boxes in original input video
PtsOffset = int32(repmat([roi(1), roi(2), 0, 0],[maxNumObj 1]));

Create a VideoFileReader System object to read video from a file.

hVideoSrc = vision.VideoFileReader;
hVideoSrc.Filename = 'viptrain.avi';
hVideoSrc.VideoOutputDataType = 'single';

Create a ColorSpaceConverter System object to convert the RGB image to
Y’CbCr format.

hColorConv = vision.ColorSpaceConverter('Conversion', 'RGB to YCbCr');

Create an Autothresholder System object to convert an intensity image to
a binary image.

2-32



Graphics

hAutothreshold = vision.Autothresholder('ThresholdScaleFactor', 1.3);

Create a MorphologicalClose System object to fill in small gaps in the detected
objects.

hClosing = vision.MorphologicalClose('Neighborhood', strel('square',5));

Create a BlobAnalysis System object to find the area, centroid, and bounding
box of the objects in the video.

hBlob = vision.BlobAnalysis('MaximumCount', maxNumObj, 'ExcludeBorderBlobs'
hBlob.MinimumBlobArea = 100;
hBlob.MaximumBlobArea = 2500;

Create System objects to display results.

pos = [10 300 roi(3)+25 roi(4)+25];
hAbandonedObjects = vision.VideoPlayer('Name', 'Abandoned Objects', 'Positi
pos(1) = 46+roi(3); % move the next viewer to the right
hAllObjects = vision.VideoPlayer('Name', 'All Objects', 'Position', pos);
pos = [80+2*roi(3) 300 roi(3)-roi(1)+25 roi(4)-roi(2)+25];
hThresholdDisplay = vision.VideoPlayer('Name', 'Threshold', 'Position', pos

Video Processing Loop

Create a processing loop to perform abandoned object detection on the input
video. This loop uses the System objects you instantiated above.

firsttime = true;
while ~isDone(hVideoSrc)

Im = step(hVideoSrc);

% Select the region of interest from the original video
OutIm = Im(roi(2):end, roi(1):end, :);

YCbCr = step(hColorConv, OutIm);
CbCr = complex(YCbCr(:,:,2), YCbCr(:,:,3));

% Store the first video frame as the background
if firsttime

firsttime = false;
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BkgY = YCbCr(:,:,1);
BkgCbCr = CbCr;

end
SegY = step(hAutothreshold, abs(YCbCr(:,:,1)-BkgY));
SegCbCr = abs(CbCr-BkgCbCr) > 0.05;

% Fill in small gaps in the detected objects
Segmented = step(hClosing, SegY | SegCbCr);

% Perform blob analysis
[Area, Centroid, BBox] = step(hBlob, Segmented);

% Call the helper function that tracks the identified objects and
% returns the bounding boxes and the number of the abandoned objects.
[OutCount, OutBBox] = videoobjtracker(Area, Centroid, BBox, maxNumObj,

areaChangeFraction, centroidChangeFraction, maxConsecutiveMiss, ...
minPersistenceRatio, alarmCount);

% Display the abandoned object detection results
Imr = insertShape(Im,'FilledRectangle',OutBBox+PtsOffset,...

'Color','red','Opacity',0.5);
% insert number of abandoned objects in the frame
Imr = insertText(Imr, [1 1], OutCount);
step(hAbandonedObjects, Imr);

BlobCount = size(BBox,1);

BBoxOffset = BBox + int32(repmat([roi(1) roi(2) 0 0],[BlobCount 1]));
Imr = insertShape(Im,'Rectangle',BBoxOffset,'Color','green');

% Display all the detected objects

% insert number of all objects in the frame
Imr = insertText(Imr, [1 1], OutCount);
Imr = insertShape(Imr,'Rectangle',roi);
%Imr = step(hDrawBBox, Imr, roi);
step(hAllObjects, Imr);

% Display the segmented video
SegBBox = PtsOffset;
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SegBBox(1:BlobCount,:) = BBox;
SegIm = insertShape(double(repmat(Segmented,[1 1 3])),'Rectangle', SegB
%SegIm = step(hDrawRectangles3, repmat(Segmented,[1 1 3]), SegBBox);
step(hThresholdDisplay, SegIm);

end

release(hVideoSrc);
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The Abandoned Objects window highlights the abandoned objects with a red
box. The All Objects window marks the region of interest (ROI) with a
yellow box and all detected objects with green boxes. The Threshold window
shows the result of the background subtraction in the ROI.

Annotate Video Files with Frame Numbers
You can use the vision.TextInserter System object in MATLAB, or
theInsert Text block in a Simulink model, to overlay text on video streams.
In this Simulink model example, you add a running count of the number of
video frames to a video using the Insert Text block. The model contains the
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From Multimedia File block to import the video into the Simulink model, a
Frame Counter block to count the number of frames in the input video, and
two Video Viewer blocks to view the original and annotated videos.

You can open the example model by typing

ex_vision_annotate_video_file_with_frame_numbers

on the MATLAB command line.

1 Run your model.

2 The model displays the original and annotated videos.
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Color Formatting
For this example, the color format for the video was set to Intensity, and
therefore the color value for the text was set to a scaled value. If instead, you
set the color format to RGB, then the text value must satisfy this format, and
requires a 3-element vector.

Inserting Text
Use the Insert Text block to annotate the video stream with a running frame
count. Set the block parameters as follows:

• Main pane, Text = ['Frame count' sprintf('\n') 'Source frame:
%d']

• Main pane, Color value = 1

• Main pane, Location [x y] = [2 85]

• Font pane, Font face = LucindaTypewriterRegular

By setting the Text parameter to ['Frame count' sprintf('\n') 'Source
frame: %d'], you are asking the block to print Frame count on one line
and the Source frame: on a new line. Because you specified %d, an ANSI C
printf-style format specification, the Variables port appears on the block. The
block takes the port input in decimal form and substitutes this input for the
%d in the string. You used the Location [x y] parameter to specify where to
print the text. In this case, the location is 85 rows down and 2 columns over
from the top-left corner of the image.

Configuration Parameters
Set the configuration parameters. Open the Configuration dialog box by
selecting Model Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)
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Draw Shapes and Lines
When you specify the type of shape to draw, you must also specify it’s location
on the image. The table shows the format for the points input for the different
shapes.
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Rectangle

Shape PTS input Drawn Shape

Single Rectangle Four-element row vector
[x y width height] where

• x and y are the one-based coordinates
of the upper-left corner of the rectangle.

• width and height are the width, in
pixels, and height, in pixels, of the
rectangle. The values of width and
height must be greater than 0.

M Rectangles M-by-4 matrix

x y width height
x y width height

x y width heightM M M M

1 1 1 1

2 2 2 2

   



















where each row of the matrix corresponds
to a different rectangle and is of the same
form as the vector for a single rectangle.
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Line and Polyline
You can draw one or more lines, and one or more polylines. A polyline
contains a series of connected line segments.

Shape PTS input Drawn Shape

Single Line Four-element row vector [x1 y1 x2 y2]
where

• x1 and y1 are the coordinates of the
beginning of the line.

• x2 and y2 are the coordinates of the end
of the line.

M Lines M-by-4 matrix

x y x y
x y x y

x y x yM M M M

11 11 12 12

21 21 22 22

1 1 2 2

   



















where each row of the matrix corresponds
to a different line and is of the same form
as the vector for a single line.
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Shape PTS input Drawn Shape

Single Polyline with
(L-1) Segments

Vector of size 2L, where L is the number
of vertices, with format, [x1, y1, x2, y2,
..., xL, yL].

• x1 and y1 are the coordinates of the
beginning of the first line segment.

• x2 and y2 are the coordinates of the
end of the first line segment and the
beginning of the second line segment.

• xL and yL are the coordinates of the end
of the (L-1)th line segment.

The polyline always contains (L-1)
number of segments because the first and
last vertex points do not connect. The
block produces an error message when the
number of rows is less than two or not a
multiple of two.

M Polylines with
(L-1) Segments

2L-by-N matrix

x y x y x y
x y x y x y

x y x y

L L

L L

M M M M

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2





      

 xx yML ML



















where each row of the matrix corresponds
to a different polyline and is of the same
form as the vector for a single polyline.
When you require one polyline to contain
less than (L–1) number of segments, fill
the matrix by repeating the coordinates of
the last vertex.

The block produces an error message if
the number of rows is less than two or not
a multiple of two.
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Polygon
You can draw one or more polygons.

Shape PTS input Drawn Shape

Single Polygon with
L line segments

Row vector of size 2L, where L is the
number of vertices, with format, [x1 y1
x2 y2 ... xL yL] where

• x1 and y1 are the coordinates of the
beginning of the first line segment.

• x2 and y2 are the coordinates of the
end of the first line segment and the
beginning of the second line segment.

• xL and yL are the coordinates of the
end of the (L-1)th line segment and the
beginning of the Lth line segment.

The block connects [x1 y1] to [xL yL] to
complete the polygon. The block produces
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Shape PTS input Drawn Shape

an error if the number of rows is negative
or not a multiple of two.

M Polygons with
the largest number
of line segments in
any line being L

M-by-2L matrix

x y x y x y
x y x y x y

x y x y

L L

L L

M M M M

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2





      

 xx yML ML



















where each row of the matrix corresponds
to a different polygon and is of the same
form as the vector for a single polygon. If
some polygons are shorter than others,
repeat the ending coordinates to fill the
polygon matrix.

The block produces an error message if
the number of rows is less than two or is
not a multiple of two.
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Circle
You can draw one or more circles.
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Shape PTS input Drawn Shape

Single Circle Three-element row vector
[x y radius] where

• x and y are coordinates for the center
of the circle.

• radius is the radius of the circle, which
must be greater than 0.

M Circles M-by-3 matrix

x y radius
x y radius

x y radiusM M M

1 1 1

2 2 2

  



















where each row of the matrix corresponds
to a different circle and is of the same
form as the vector for a single circle.
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Registration and Stereo
Vision

• “Feature Detection, Extraction, and Matching” on page 3-2

• “Stereo Image Rectification” on page 3-61

• “Find Camera Parameters with the Camera Calibrator” on page 3-74

• “Stereo Vision” on page 3-97

• “Find Fundamental Matrix Describing Epipolar Geometry” on page 3-117



3 Registration and Stereo Vision

Feature Detection, Extraction, and Matching

In this section...

“Measuring Planar Objects with a Calibrated Camera” on page 3-2

“Digit Classification Using HOG Features” on page 3-14

“Detect Edges in Images” on page 3-23

“Detect Lines in Images” on page 3-31

“Video Stabilization Using Point Feature Matching” on page 3-34

“Video Stabilization” on page 3-47

“Measure Angle Between Lines” on page 3-52

Measuring Planar Objects with a Calibrated Camera
This example shows how to measure the diameter of coins in world units
using a single calibrated camera.

Overview

This example shows how to calibrate a camera, and then use it to measure the
size of planar objects, such as coins. An example application of this approach
is measuring parts on a conveyor belt for quality control.

Calibrate the Camera

Camera calibration is the process of estimating the parameters of the lens and
the image sensor. These parameters are need to measure objects captured by
the camera. This example shows how to calibrate a camera programmatically.
Alternatively, you can calibrate a camera using the cameraCalibrator app.

To calibrate the camera, we first need to take multiple images of a calibration
pattern from different angles. A typical calibration pattern is an asymmetric
checkerboard, where one side contains an even number of squares, both black
and white, and the other contains an odd number of squares.

The pattern must be affixed to a flat surface, and it should be at approximately
the same distance from the camera as the objects you want to measure. The
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size of a square must be measured in world units, for example millimeters, as
precisely as possible. In this example we use 9 images of the pattern, but in
practice it is recommended to use 10 to 20 images for accurate calibration.

Prepare Calibration Images

Create a cell array of file names of calibration images.

numImages = 9;
files = cell(1, numImages);
for i = 1:numImages

files{i} = fullfile(matlabroot, 'toolbox', 'vision', 'visiondemos', ...
'calibration', 'slr', sprintf('image%d.jpg', i));

end

% Display one of the calibration images
magnification = 25;
figure; imshow(files{1}, 'InitialMagnification', magnification);
title('One of the Calibration Images');
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Estimate Camera Parameters

% Detect the checkerboard corners in the images.
[imageCorners, boardSize] = detectCheckerboardPoints(files);

% Generate the world coordinates of the checkerboard corners in the
% pattern-centric coordinate system, with the upper-left corner at (0,0).
squareSize = 29; % in millimeters
worldCorners = generateCheckerboardPoints(boardSize, squareSize);

% Calibrate the camera.
cameraParameters = estimateCameraParameters(imageCorners, worldCorners);

% Evaluate calibration accuracy.
figure; showReprojectionErrors(cameraParameters);
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The bar graph indicates the accuracy of the calibration. Each bar shows
the mean reprojection error for the corresponding calibration image. The
reprojection errors are the distances between the corner points detected in the
image, and the corresponding ideal world points projected into the image.

Read the Image Of Objects to be Measured

Load the image containing objects to be measured. This image includes the
calibration pattern, and the pattern is in the same plane as the objects you
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want to measure. In this example, both the pattern and the coins are on the
same table top.

Alternatively, you could use two separate images: one containing the pattern,
and the other containing the objects to be measured. Again, the objects
and the pattern must be in the same plane. Furthermore, images must be
captured from exactly the same view point, meaning that the camera must
be fixed in place.

imOrig = imread(fullfile(matlabroot, 'toolbox', 'vision', 'visiondemos', ..
'calibration', 'slr', 'image9.jpg'));

figure; imshow(imOrig, 'InitialMagnification', magnification);
title('Input Image');

Undistort the Image
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Use the cameraParameters object to remove lens distortion from the image.
This is necessary for accurate measurement.

im = undistortImage(imOrig, cameraParameters);
d = abs(rgb2gray(im) - rgb2gray(imOrig));
figure; imshow(d, [], 'InitialMagnification', magnification);
title('Difference Between the Original and the Undistorted Images');

Note that this image exhibits very little lens distortion. The undistortion step
is far more important if you use a wide-angle lens, or a low-end webcam.

Segment Coins

In this case, the coins are colorful on white background. Use the saturation
component of the HSV representation of the image to segment them out.
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% Convert the image to the HSV color space.
imHSV = rgb2hsv(im);

% Get the saturation channel.
saturation = imHSV(:, :, 2);

% Threshold the image
t = graythresh(saturation);
imCoin = (saturation > t);

figure; imshow(imCoin, 'InitialMagnification', magnification);
title('Segmented Coins');

Detect Coins
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We can assume that the two largest connected components in the segmented
image correspond to the coins.

% Find connected components.
blobAnalysis = vision.BlobAnalysis('AreaOutputPort', true,...

'CentroidOutputPort', false,...
'BoundingBoxOutputPort', true,...
'MinimumBlobArea', 200, 'ExcludeBorderBlobs', true);

[areas, boxes] = step(blobAnalysis, imCoin);

% Sort connected components in descending order by area
[~, idx] = sort(areas, 'Descend');

% Get the two largest components.
boxes = boxes(idx(1:2), :);

% Reduce the size of the image for display.
scale = magnification / 100;
imDetectedCoins = imresize(im, scale);

% Insert labels for the coins.
imDetectedCoins = insertObjectAnnotation(imDetectedCoins, 'rectangle', ...

scale * boxes, 'penny');
figure; imshow(imDetectedCoins);
title('Detected Coins');
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Compute Extrinsics

To map points in the image coordinates to points in the world coordinates
we need to compute the rotation and the translation between the camera
and the calibration pattern.

In the equations below is the camera matrix, and is the homography,
a projective transformation. maps the checkerboard corners in the world
coordinates to the corresponding points in the image coordinates and has
the form
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Then, the 3D rotation matrix and the translation vector can be computed
as follows [1]:

where , , and are the rows of the 3x3 rotation matrix , and
.

Note that a rotation matrix must satisfy certain properties. Its determinant
must be equal to 1, and its transpose must be equal to its inverse. Because
of noise in the data, may not be a true rotation matrix. A rotation matrix
that best approximates can be computed using the singular value

decomposition as follows:

Additionally, this formulation assumes that there is no lens distortion,
meaning that distortion has been removed using undistortImage.

% Detect the checkerboard.
[imageCorners, boardSize] = detectCheckerboardPoints(im);

% Get inverse intrinsic matrix.
Ainv = inv(cameraParameters.IntrinsicMatrix);

% Compute homography.
H = fitgeotrans(worldCorners, imageCorners, 'projective');
H = H.T;
h1 = H(1, :);
h2 = H(2, :);
h3 = H(3, :);
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lambda = 1 / norm(h1 * Ainv);

% Compute 3D rotation matrix.
r1 = lambda * h1 * Ainv;
r2 = lambda * h2 * Ainv;
r3 = cross(r1, r2);
R = [r1; r2; r3];

% R may not be a true rotation matrix because of noise in the data. Find
% the best rotation matrix to approximate R using SVD.
[U, ~, V] = svd(R);
R = U * V';

% Compute translation vector.
t = lambda * h3 * Ainv;

Measure the First Coin

To measure the first coin we convert the top-left and the top-right corners of
the bounding box into world coordinates. Then we compute the Euclidean
distance between them in millimeters. Note that the actual diameter of a
US penny is 19.05 mm.

In the equation below is a point in the image. is the corresponding
point in the world coordinates, which lies on the same plane as the calibration
pattern. To find , we need to solve the following equation in
homogeneous coordinates:

% Get the top-left and the top-right corners.
box1 = double(boxes(1, :));
imagePoints1 = [box1(1:2); ...

box1(1) + box1(3), box1(2)];

% Compute the transformation matrix from world to image
T = [R(1, :); R(2, :); t] * cameraParameters.IntrinsicMatrix;
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% Create a transformation object
tform = projective2d(T);

% Apply the inverse transformation from image to world
worldPoints1 = transformPointsInverse(tform, imagePoints1);

% Compute the diameter of the coin in millimeters.
d = worldPoints1(2, :) - worldPoints1(1, :);
diameterInMillimeters = hypot(d(1), d(2));
fprintf('Measured diameter of one penny = %0.2f mm\n', diameterInMillimeter

Measured diameter of one penny = 19.18 mm

Measure the Second Coin

Measure the second coin the same way as the first coin.

% Get the top-left and the top-right corners.
box2 = double(boxes(2, :));
imagePoints2 = [box2(1:2); ...

box2(1) + box2(3), box2(2)];

% Apply the inverse transformation from image to world
worldPoints2 = transformPointsInverse(tform, imagePoints2);

% Compute the diameter of the coin in millimeters.
d = worldPoints2(2, :) - worldPoints2(1, :);
diameterInMillimeters = hypot(d(1), d(2));
fprintf('Measured diameter of the other penny = %0.2f mm\n', diameterInMill

Measured diameter of the other penny = 18.88 mm

Summary

This example showed how to use a calibrated camera to measure planar
objects. Note that the measurements were accurate to within 0.2 mm.

References
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Digit Classification Using HOG Features
This example shows how to classify digits using HOG features and an SVM
classifier.

Object classification is an important task in many computer vision
applications, including surveillance, automotive safety, and image retrieval.
For example, in an automotive safety application, you may need to classify
nearby objects as pedestrians or vehicles. Regardless of the type of object
being classified, the basic procedure for creating an object classifier is:

• Acquire a labeled data set with images of the desired object.

• Partition the data set into a training set and a test set.

• Train the classifier using features extracted from the training set.

• Test the classifier using features extracted from the test set.

To illustrate, this example shows how to classify numerical digits using HOG
(Histogram of Oriented Gradient) features [1] and an SVM (Support Vector
Machine) classifier. This type of classification is often used in many Optical
Character Recognition (OCR) applications.

The example uses the svmtrain and svmclassify functions from the
Statistics Toolbox™ and the extractHOGFeatures function from the
Computer Vision System Toolbox™.

function HOGDigitClassificationExample

Digit Data Set

For training, synthetic images are created using the insertText function from
the Computer Vision System Toolbox™. The training images each contain a
digit surrounded by other digits, which mimics how digits are normally seen
together. Using synthetic images is convenient and it enables the creation
of a variety of training samples without having to manually collect them.
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For testing, scans of handwritten digits are used to validate how well the
classifier performs on data that is different than the synthetic training data.
Although this is not the most representative data set, there is enough data to
train and test a classifier, and show the feasibility of the approach.

% Load training and test data
load('digitDataSet.mat', 'trainingImages', 'trainingLabels', 'testImages');

% Update file name relative to matlabroot
dataSetDir = fullfile(matlabroot,'toolbox','vision','visiondemos');
trainingImages = fullfile(dataSetDir, trainingImages);
testImages = fullfile(dataSetDir, testImages);

trainingImages is a 200-by-10 cell array of training image file names; each
column contains both the positive and negative training images for a digit.
trainingLabels is a 200-by-10 matrix containing a label for each image in the
trainingImage cell array. The labels are logical values indicating whether
or not the image is a positive instance or a negative instance for a digit.
testImages is a 12-by-10 cell array containing the image file names of the
handwritten digit images. There are 12 examples per digit.

% Show training and test samples
figure;
subplot(2,3,1); imshow(trainingImages{3,2});
subplot(2,3,2); imshow(trainingImages{23,4});
subplot(2,3,3); imshow(trainingImages{4,9});

subplot(2,3,4); imshow(testImages{2,2});
subplot(2,3,5); imshow(testImages{5,4});
subplot(2,3,6); imshow(testImages{8,9});
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Note that prior to training and testing a classifier the following pre-processing
step is applied to images from this dataset:

function J = preProcess(I)
lvl = graythresh(I);
J = im2bw(I,lvl);

end

This pre-processing step removes noise artifacts introduced while collecting
the image samples and helps provide better feature vectors for training the
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classifier. For example, the output of this pre-processing step on a couple of
training and test images is shown next:

exTestImage = imread(testImages{5,4});
exTrainImage = imread(trainingImages{23,4});

figure;
subplot(2,2,1); imshow(exTrainImage);
subplot(2,2,2); imshow(preProcess(exTrainImage));
subplot(2,2,3); imshow(exTestImage);
subplot(2,2,4); imshow(preProcess(exTestImage));
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Using HOG Features

The data used to train the SVM classifier are HOG feature vectors extracted
from the training images. Therefore, it is important to make sure the HOG
feature vector encodes the right amount of information about the object. The
extractHOGFeatures function returns a visualization output that can help
form some intuition about just what the "right amount of information" means.
By varying the HOG cell size parameter and visualizing the result, you can
see the effect the cell size parameter has on the amount of shape information
encoded in the feature vector:

img = imread(trainingImages{4,3});

% Extract HOG features and HOG visualization
[hog_2x2, vis2x2] = extractHOGFeatures(img,'CellSize',[2 2]);
[hog_4x4, vis4x4] = extractHOGFeatures(img,'CellSize',[4 4]);
[hog_8x8, vis8x8] = extractHOGFeatures(img,'CellSize',[8 8]);

% Show the original image
figure;
subplot(2,3,1:3); imshow(img);

% Visualize the HOG features
subplot(2,3,4);
plot(vis2x2);
title({'CellSize = [2 2]'; ['Feature length = ' num2str(length(hog_2x2))]})

subplot(2,3,5);
plot(vis4x4);
title({'CellSize = [4 4]'; ['Feature length = ' num2str(length(hog_4x4))]})

subplot(2,3,6);
plot(vis8x8);
title({'CellSize = [8 8]'; ['Feature length = ' num2str(length(hog_8x8))]})
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The visualization shows that a cell size of [8 8] does not encode much shape
information, while a cell size of [2 2] encodes a lot of shape information but
increases the dimensionality of the HOG feature vector significantly. A good
compromise is a 4-by-4 cell size. This size setting encodes enough spatial
information to visually identify a digit shape while limiting the number
of dimensions in the HOG feature vector, which helps speed up training.
In practice, the HOG parameters should be varied with repeated classifier
training and testing to identify the optimal parameter settings.

cellSize = [4 4];
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hogFeatureSize = length(hog_4x4);

Train the Classifier

Digit classification is a multi-class classification problem, where you have
to classify an object into one out of the ten possible digit classes. The SVM
algorithm in the Statistics Toolbox™, however, produces a binary classifier,
which means that it is able to classify an object into one of two classes. In
order to use a binary SVM for digit classification, 10 such classifiers are
required; each one trained for a specific digit. This is a common technique
used to solve multi-class classification problems with binary classifiers and is
known as "one-versus-all" or "one-versus-rest" classification.

% Train an SVM classifier for each digit
digits = char('0'):char('9');

for d = 1:numel(digits)

% Pre-allocate trainingFeatures array
numTrainingImages = size(trainingImages,1);
trainingFeatures = zeros(numTrainingImages,hogFeatureSize,'single');

% Extract HOG features from each training image. trainingImages
% contains both positive and negative image samples.
for i = 1:numTrainingImages

img = imread(trainingImages{i,d});

img = preProcess(img);

trainingFeatures(i,:) = extractHOGFeatures(img,'CellSize',cellSize)
end

% Train a classifier for a digit. Each row of trainingFeatures contains
% the HOG features extracted for a single training image. The
% trainingLabels indicate if the features are extracted from positive
% (true) or negative (false) training images.
svm(d) = svmtrain(trainingFeatures, trainingLabels(:,d));

end

Test the Classifier
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Now the SVM classifiers can be tested using the handwritten digit images
shown earlier.

% Run each SVM classifier on the test images
for d = 1:numel(digits)

% Pre-allocate testFeatures array
numImages = size(testImages,1);
testFeatures = zeros(numImages, hogFeatureSize, 'single');

% Extract features from each test image
for i = 1:numImages

img = imread(testImages{i,d});

img = preProcess(img);

testFeatures(i,:) = extractHOGFeatures(img,'CellSize',cellSize);
end

% Run all the SVM classifiers
for digit = 1:numel(svm)

predictedLabels(:,digit,d) = svmclassify(svm(digit), testFeatures);
end

end

Results

Tabulate the classification results for each SVM classifier.

displayTable(predictedLabels)

digit | svm(0) svm(1) svm(2) svm(3) svm(4) svm(5) svm(6) svm
---------------------------------------------------------------------------
0 | 6 0 0 0 0 0 6 0
1 | 3 10 0 0 0 0 0 2
2 | 0 2 8 0 0 0 1 1
3 | 0 0 0 7 0 0 4 0
4 | 0 0 0 0 9 0 0 0
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5 | 0 0 0 0 0 4 7 0
6 | 0 0 0 0 2 0 6 0
7 | 0 0 0 1 0 0 0 5
8 | 0 0 0 1 0 0 0 1
9 | 0 1 0 1 1 1 0 0

The columns of the table contain the classification results for each SVM
classifier. Ideally, the table would be a diagonal matrix, where each diagonal
element equals the number of images per digit (12 in this example). Based
on this data set, digit 1, 2, 3, and 4 are easier to recognize compared to digit
6, where there are many false positives. Using more representative data
sets like MNIST [2] or SVHN [3], which contain thousands of handwritten
characters, is likely to produce a better classifier compared with the one
created using this example data set.

Summary

This example illustrated the basic procedure for creating an object classifier
using the extractHOGfeatures function from the Computer Vision System
Toolbox and the svmclassify and svmtrain functions from the Statistics
Toolbox™. Although HOG features and SVM classifiers were used here, other
features and machine learning algorithms can be used in the same way.
For instance, you can explore using different feature types for training the
classifier; or you can see the effect of using other machine learning algorithms
available in the Statistics Toolbox™ such as k-nearest neighbors.
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Appendix - Helper functions

function displayTable(labels)
colHeadings = arrayfun(@(x)sprintf('svm(%d)',x),0:9,'UniformOutput'
format = repmat('%-9s',1,11);
header = sprintf(format,'digit |',colHeadings{:});
fprintf('\n%s\n%s\n',header,repmat('-',size(header)));
for idx = 1:numel(digits)

fprintf('%-9s', [digits(idx) ' |']);
fprintf('%-9d', sum(labels(:,:,idx)));
fprintf('\n')

end
end

end

Detect Edges in Images
This example shows how to find the edges of rice grains in an intensity image.
It finds the pixel locations where the magnitude of the gradient of intensity
exceeds a threshold value. These locations typically occur at the boundaries of
objects.

Open the Simulink model.

ex_vision_detect_edges_in_image
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Set block parameters.

Block Parameter setting

Image From File • File name to rice.png.

• Output data type to single.

Edge Detection Use the Edge Detection block to find
the edges in the image.
• Output type = Binary image

and gradient components

• Select the Edge thinning check
box.
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Block Parameter setting

Video Viewer and Video Viewer1 View the original and binary images.
Accept the default parameters for
both viewers.

2-D Minimum and 2-D Minimum1 Find the minimum value of Gv
and Gh matrices. Set the Mode
parameters to Value for both of
these blocks.

Subtract and Subtract1 Subtract the minimum values from
each element of the Gv and Gh
matrices. This process ensures that
the minimum value of these matrices
is 0. Accept the default parameters.

2-DMaximum and 2-DMaximum1 Find the maximum value of the new
Gv and Gh matrices. Set the Mode
parameters to Value for both of
these blocks.

Divide and Divide1 Divide each element of the Gv and
Gh matrices by their maximum
value. This normalization process
ensures that these matrices range
between 0 and 1. Accept the default
parameters.

Video Viewer2 and Video
Viewer3

View the gradient components
of the image. Accept the default
parameters.

Set configuration parameters.

Open the Configuration dialog box by selecting Model Configuration
Parameters from the Simulation menu. The parameters are set as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)
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• Diagnostics pane, Automatic solver parameter selection: = none

Run your model and view edge detection results.

The Video Viewer window displays the original image.

The Video Viewer1 window displays the edges of the rice grains in white
and the background in black.
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The Video Viewer2 window displays the intensity image of the vertical
gradient components of the image. You can see that the vertical edges of the
rice grains are darker and more well defined than the horizontal edges.
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The Video Viewer3 window displays the intensity image of the horizontal
gradient components of the image. In this image, the horizontal edges of
the rice grains are more well defined.
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The Edge Detection block convolves the input matrix with the Sobel kernel.
This calculates the gradient components of the image that correspond to the
horizontal and vertical edge responses. The block outputs these components
at the Gh and Gv ports, respectively. Then the block performs a thresholding
operation on the gradient components to find the binary image. The binary
image is a matrix filled with 1s and 0s. The nonzero elements of this matrix
correspond to the edge pixels and the zero elements correspond to the
background pixels. The block outputs the binary image at the Edge port.

The matrix values at the Gv and Gh output ports of the Edge Detection block
are double-precision floating-point. These matrix values need to be scaled
between 0 and 1 in order to display them using the Video Viewer blocks. This
is done with the Statistics and Math Operation blocks.
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Run the model faster by double-clicking the Edge Detection block and clear
the Edge thinning check box.

Your model runs faster because the Edge Detection block is more efficient
when you clear the Edge thinning check box. However, the edges of rice
grains in the Video Viewer window are wider.

Close the model.

bdclose('ex_vision_detect_edges_in_image');
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Detect Lines in Images
This example shows you how to find lines within images and enables you to
detect, measure, and recognize objects. You use the Hough Transform, Find
Local Maxima, Edge Detectionand Hough Lines blocks to find the longest
line in an image.

You can open the model for this example by typing

ex_vision_detect_lines

at the MATLAB command line.

3-31



3 Registration and Stereo Vision

The Video Viewer blocks display the original image, the image with all edges
found, and the image with the longest line annotated.

The Edge Detection block finds the edges in the intensity image. This process
improves the efficiency of the Hough Lines block by reducing the image area
over which the block searches for lines. The block also converts the image to a
binary image, which is the required input for the Hough Transform block.

For additional examples of the techniques used in this section, see the
following list of examples. You can open these examples by typing the title
at the MATLAB command prompt:

Example MATLAB Simulink
model-based

Lane Departure
Warning System

videoldws vipldws

Rotation Correction videorotationcorrectionviphough

Setting Block Parameters
Block Parameter setting

Hough Transform The Hough Transform block
computes the Hough matrix by
transforming the input image into
the rho-theta parameter space. The
block also outputs the rho and theta
values associated with the Hough
matrix. The parameters are set as
follows:

• Theta resolution (radians) =
pi/360

• Select the Output theta and rho
values check box.

Find Local Maxima The Find Local Maxima block finds
the location of the maximum value

3-32



Feature Detection, Extraction, and Matching

Block Parameter setting

in the Hough matrix. The block
parameters are set as follows:

• Maximum number of local
maxima = 1

• Input is Hough matrix
spanning full theta range

Selector The Selector blocks separate the
indices of the rho and theta values,
which the Find Local Maxima
block outputs at the Idx port. The
rho and theta values correspond
to the maximum value in the
Hough matrix. The Selector blocks
parameters are set as follows:

• Number of input dimensions:
1

• Index mode = One-based

• Index Option = Index vector
(port)

• Input port size = 2

Variable Selector The Variable Selector blocks index
into the rho and theta vectors and
determine the rho and theta values
that correspond to the longest line in
the original image. The parameters
of the Variable Selector blocks are
set as follows:
• Select = Columns

• Index mode = One-based
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Block Parameter setting

Hough Lines The Hough Lines block determines
where the longest line intersects the
edges of the original image.
• Sine value computation
method = Trigonometric
function

Draw Shapes The Draw Shapes block draws a
white line over the longest line on
the original image. The coordinates
are set to superimpose a line on
the original image. The block
parameters are set as follows:
• Shape = Lines

• Border color = White

Configuration Parameters
Set the configuration parameters. Open the Configuration dialog box by
selecting Model Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = discrete (no continuous states)

• Solver pane, Fixed-step size (fundamental sample time): = 0.2

Video Stabilization Using Point Feature Matching
This example shows how to stabilize a video that was captured from a jittery
platform. One way to stabilize a video is to track a salient feature in the
image and use this as an anchor point to cancel out all perturbations relative
to it. This procedure, however, must be bootstrapped with knowledge of
where such a salient feature lies in the first video frame. In this example, we
explore a method of video stabilization that works without any such a priori
knowledge. It instead automatically searches for the "background plane" in a
video sequence, and uses its observed distortion to correct for camera motion.
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This stabilization algorithm involves two steps. First, we determine the
affine image transformations between all neighboring frames of a video
sequence using the estimateGeometricTransform function applied to point
correspondences between two images. Second, we warp the video frames
to achieve a stabilized video. We will use the Computer Vision System
Toolbox™, both for the algorithm and for display.

This example is similar to the Video Stabilization Example. The main
difference is that the Video Stabilization Example is given a region to track
while this example is given no such knowledge. Both examples use the same
video.

Step 1. Read Frames from a Movie File

Here we read in the first two frames of a video sequence. We read them as
intensity images since color is not necessary for the stabilization algorithm,
and because using grayscale images improves speed. Below we show both
frames side by side, and we produce a red-cyan color composite to illustrate
the pixel-wise difference between them. There is obviously a large vertical
and horizontal offset between the two frames.

filename = 'shaky_car.avi';
hVideoSrc = vision.VideoFileReader(filename, 'ImageColorSpace', 'Intensity'

imgA = step(hVideoSrc); % Read first frame into imgA
imgB = step(hVideoSrc); % Read second frame into imgB

figure; imshowpair(imgA, imgB, 'montage');
title(['Frame A', repmat(' ',[1 70]), 'Frame B']);
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figure; imshowpair(imgA,imgB,'ColorChannels','red-cyan');
title('Color composite (frame A = red, frame B = cyan)');
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Step 2. Collect Salient Points from Each Frame

Our goal is to determine a transformation that will correct for the distortion
between the two frames. We can use the estimateGeometricTransform
function for this, which will return an affine transform. As input we must
provide this function with a set of point correspondences between the two
frames. To generate these correspondences, we first collect points of interest
from both frames, then select likely correspondences between them.

In this step we produce these candidate points for each frame. To have the
best chance that these points will have corresponding points in the other
frame, we want points around salient image features such as corners. For
this we use the detectFASTFeatures function, which implements one of the
fastest corner detection algorithms.

The detected points from both frames are shown in the figure below. Observe
how many of them cover the same image features, such as points along the
tree line, the corners of the large road sign, and the corners of the cars.

ptThresh = 0.1;
pointsA = detectFASTFeatures(imgA, 'MinContrast', ptThresh);
pointsB = detectFASTFeatures(imgB, 'MinContrast', ptThresh);

% Display corners found in images A and B.
figure; imshow(imgA); hold on;
plot(pointsA);
title('Corners in A');

figure; imshow(imgB); hold on;
plot(pointsB);
title('Corners in B');
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Step 3. Select Correspondences Between Points

Next we pick correspondences between the points derived above. For each
point, we extract a Fast Retina Keypoint (FREAK) descriptor centered around
it. The matching cost we use between points is the Hamming distance since
FREAK descriptors are binary. Points in frame A and frame B are matched
putatively. Note that there is no uniqueness constraint, so points from frame
B can correspond to multiple points in frame A.

% Extract FREAK descriptors for the corners
[featuresA, pointsA] = extractFeatures(imgA, pointsA);
[featuresB, pointsB] = extractFeatures(imgB, pointsB);

Match features which were found in the current and the previous frames.
Since the FREAK descriptors are binary, the matchFeatures function uses
the Hamming distance to find the corresponding points.

indexPairs = matchFeatures(featuresA, featuresB);
pointsA = pointsA(indexPairs(:, 1), :);
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pointsB = pointsB(indexPairs(:, 2), :);

The image below shows the same color composite given above, but added are
the points from frame A in red, and the points from frame B in green. Yellow
lines are drawn between points to show the correspondences selected by the
above procedure. Many of these correspondences are correct, but there is
also a significant number of outliers.

figure; showMatchedFeatures(imgA, imgB, pointsA, pointsB);
legend('A', 'B');

Step 4. Estimating Transform from Noisy Correspondences

Many of the point correspondences obtained in the previous step are incorrect.
But we can still derive a robust estimate of the geometric transform between
the two images using the M-estimator SAmple Consensus (MSAC) algorithm,
which is a variant of the RANSAC algorithm. The MSAC algorithm is
implemented in the estimateGeometricTransform function. This function,
when given a set of point correspondences, will search for the valid inlier
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correspondences. From these it will then derive the affine transform that
makes the inliers from the first set of points match most closely with the
inliers from the second set. This affine transform will be a 3-by-3 matrix
of the form:

[a_1 a_3 0;
a_2 a_4 0;
t_x t_y 1]

The parameters define scale, rotation, and sheering effects of the transform,
while the parameters are translation parameters. This transform can be
used to warp the images such that their corresponding features will be moved
to the same image location.

A limitation of the affine transform is that it can only alter the imaging plane.
Thus it is ill-suited to finding the general distortion between two frames taken
of a 3-D scene, such as with this video taken from a moving car. But it does
work under certain conditions that we shall describe shortly.

[tform, pointsBm, pointsAm] = estimateGeometricTransform(...
pointsB, pointsA, 'affine');

imgBp = imwarp(imgB, tform, 'OutputView', imref2d(size(imgB)));
pointsBmp = transformPointsForward(tform, pointsBm.Location);

Below is a color composite showing frame A overlaid with the reprojected
frame B, along with the reprojected point correspondences. The results are
excellent, with the inlier correspondences nearly exactly coincident. The cores
of the images are both well aligned, such that the red-cyan color composite
becomes almost purely black-and-white in that region.

Note how the inlier correspondences are all in the background of the image,
not in the foreground, which itself is not aligned. This is because the
background features are distant enough that they behave as if they were
on an infinitely distant plane. Thus, even though the affine transform is
limited to altering only the imaging plane, here that is sufficient to align
the background planes of both images. Furthermore, if we assume that the
background plane has not moved or changed significantly between frames,
then this transform is actually capturing the camera motion. Therefore
correcting for this will stabilize the video. This condition will hold as long as
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the motion of the camera between frames is small enough, or, conversely, if
the sample time of the video is high enough.

figure;
showMatchedFeatures(imgA, imgBp, pointsAm, pointsBmp);
legend('A', 'B');

Step 5. Transform Approximation and Smoothing

Given a set of video frames , we can now use the above
procedure to estimate the distortion between all frames and as affine
transforms, . Thus the cumulative distortion of a frame relative to the
first frame will be the product of all the preceding inter-frame transforms, or

We could use all the six parameters of the affine transform above, but, for
numerical simplicity and stability, we choose to re-fit the matrix as a simpler
scale-rotation-translation transform. This has only four free parameters
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compared to the full affine transform’s six: one scale factor, one angle, and
two translations. This new transform matrix is of the form:

[s*cos(ang) s*-sin(ang) 0;
s*sin(ang) s*cos(ang) 0;

t_x t_y 1]

We show this conversion procedure below by fitting the above-obtained
transform with a scale-rotation-translation equivalent, . To show
that the error of converting the transform is minimal, we reproject frame B
with both transforms and show the two images below as a red-cyan color
composite. As the image appears black and white, obviously the pixel-wise
difference between the different reprojections is negligible.

% Extract scale and rotation part sub-matrix.
H = tform.T;
R = H(1:2,1:2);
% Compute theta from mean of two possible arctangents
theta = mean([atan2(R(2),R(1)) atan2(-R(3),R(4))]);
% Compute scale from mean of two stable mean calculations
scale = mean(R([1 4])/cos(theta));
% Translation remains the same:
translation = H(3, 1:2);
% Reconstitute new s-R-t transform:
HsRt = [[scale*[cos(theta) -sin(theta); sin(theta) cos(theta)]; ...

translation], [0 0 1]'];
tformsRT = affine2d(HsRt);

imgBold = imwarp(imgB, tform, 'OutputView', imref2d(size(imgB)));
imgBsRt = imwarp(imgB, tformsRT, 'OutputView', imref2d(size(imgB)));

figure(2), clf;
imshowpair(imgBold,imgBsRt,'ColorChannels','red-cyan'), axis image;
title('Color composite of affine and s-R-t transform outputs');

3-43



3 Registration and Stereo Vision

Step 6. Run on the Full Video

Now we apply the above steps to smooth a video sequence. For readability,
the above procedure of estimating the transform between two images has
been placed in the MATLAB function cvexEstStabilizationTform. The
function cvexTformToSRT also converts a general affine transform into a
scale-rotation-translation transform.

At each step we calculate the transform between the present frames. We
fit this as an s-R-t transform, . Then we combine this the cumulative
transform, , which describes all camera motion since the first
frame. The last two frames of the smoothed video are shown in a Video Player
as a red-cyan composite.

With this code, you can also take out the early exit condition to make the
loop process the entire video.

% Reset the video source to the beginning of the file.
reset(hVideoSrc);
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hVPlayer = vision.VideoPlayer; % Create video viewer

% Process all frames in the video
movMean = step(hVideoSrc);
imgB = movMean;
imgBp = imgB;
correctedMean = imgBp;
ii = 2;
Hcumulative = eye(3);
while ~isDone(hVideoSrc) && ii < 10

% Read in new frame
imgA = imgB; % z^-1
imgAp = imgBp; % z^-1
imgB = step(hVideoSrc);
movMean = movMean + imgB;

% Estimate transform from frame A to frame B, and fit as an s-R-t
H = cvexEstStabilizationTform(imgA,imgB);
HsRt = cvexTformToSRT(H);
Hcumulative = HsRt * Hcumulative;
imgBp = imwarp(imgB,affine2d(Hcumulative),'OutputView',imref2d(size(img

% Display as color composite with last corrected frame
step(hVPlayer, imfuse(imgAp,imgBp,'ColorChannels','red-cyan'));
correctedMean = correctedMean + imgBp;

ii = ii+1;
end
correctedMean = correctedMean/(ii-2);
movMean = movMean/(ii-2);

% Here you call the release method on the objects to close any open files
% and release memory.
release(hVideoSrc);
release(hVPlayer);
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During computation, we computed the mean of the raw video frames and of
the corrected frames. These mean values are shown side-by-side below. The
left image shows the mean of the raw input frames, proving that there was
a great deal of distortion in the original video. The mean of the corrected
frames on the right, however, shows the image core with almost no distortion.
While foreground details have been blurred (as a necessary result of the car’s
forward motion), this shows the efficacy of the stabilization algorithm.

figure; imshowpair(movMean, correctedMean, 'montage');
title(['Raw input mean', repmat(' ',[1 50]), 'Corrected sequence mean']);
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Video Stabilization
This example shows how to remove the effect of camera motion from a video
stream.

Introduction

In this example we first define the target to track. In this case, it is the back
of a car and the license plate. We also establish a dynamic search region,

3-47



3 Registration and Stereo Vision

whose position is determined by the last known target location. We then
search for the target only within this search region, which reduces the number
of computations required to find the target. In each subsequent video frame,
we determine how much the target has moved relative to the previous frame.
We use this information to remove unwanted translational camera motions
and generate a stabilized video.

Initialization

Create a System object to read video from a multimedia file. We set the
output to be of intensity only video.

% Input video file which needs to be stabilized.
filename = 'shaky_car.avi';

hVideoSource = vision.VideoFileReader(filename, ...
'ImageColorSpace', 'Intensity',...
'VideoOutputDataType', 'double');

Create a geometric translator System object used to compensate for the
camera movement.

hTranslate = vision.GeometricTranslator( ...
'OutputSize', 'Same as input image', ...
'OffsetSource', 'Input port');

Create a template matcher System object to compute the location of the best
match of the target in the video frame. We use this location to find translation
between successive video frames.

hTM = vision.TemplateMatcher('ROIInputPort', true, ...
'BestMatchNeighborhoodOutputPort', true);

Create a System object to display the original video and the stabilized video.

hVideoOut = vision.VideoPlayer('Name', 'Video Stabilization');
hVideoOut.Position(1) = round(0.4*hVideoOut.Position(1));
hVideoOut.Position(2) = round(1.5*(hVideoOut.Position(2)));
hVideoOut.Position(3:4) = [650 350];

Here we initialize some variables used in the processing loop.
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pos.template_orig = [109 100]; % [x y] upper left corner
pos.template_size = [22 18]; % [width height]
pos.search_border = [15 10]; % max horizontal and vertical displacement
pos.template_center = floor((pos.template_size-1)/2);
pos.template_center_pos = (pos.template_orig + pos.template_center - 1);
fileInfo = info(hVideoSource);
W = fileInfo.VideoSize(1); % Width in pixels
H = fileInfo.VideoSize(2); % Height in pixels
BorderCols = [1:pos.search_border(1)+4 W-pos.search_border(1)+4:W];
BorderRows = [1:pos.search_border(2)+4 H-pos.search_border(2)+4:H];
sz = fileInfo.VideoSize;
TargetRowIndices = ...

pos.template_orig(2)-1:pos.template_orig(2)+pos.template_size(2)-2;
TargetColIndices = ...

pos.template_orig(1)-1:pos.template_orig(1)+pos.template_size(1)-2;
SearchRegion = pos.template_orig - pos.search_border - 1;
Offset = [0 0];
Target = zeros(18,22);
firstTime = true;

Stream Processing Loop

This is the main processing loop which uses the objects we instantiated above
to stabilize the input video.

while ~isDone(hVideoSource)
input = step(hVideoSource);

% Find location of Target in the input video frame
if firstTime

Idx = int32(pos.template_center_pos);
MotionVector = [0 0];
firstTime = false;

else
IdxPrev = Idx;

ROI = [SearchRegion, pos.template_size+2*pos.search_border];
Idx = step(hTM, input, Target, ROI);

MotionVector = double(Idx-IdxPrev);
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end

[Offset, SearchRegion] = updatesearch(sz, MotionVector, ...
SearchRegion, Offset, pos);

% Translate video frame to offset the camera motion
Stabilized = step(hTranslate, input, fliplr(Offset));

Target = Stabilized(TargetRowIndices, TargetColIndices);

% Add black border for display
Stabilized(:, BorderCols) = 0;
Stabilized(BorderRows, :) = 0;

TargetRect = [pos.template_orig-Offset, pos.template_size];
SearchRegionRect = [SearchRegion, pos.template_size + 2*pos.search_bord

% Draw rectangles on input to show target and search region
input = insertShape(input, 'Rectangle', [TargetRect; SearchRegionRect],

'Color', 'white');
% Display the offset (displacement) values on the input image
txt = sprintf('(%+05.1f,%+05.1f)', Offset);
input = insertText(input(:,:,1),[191 215],txt,'FontSize',16, ...

'TextColor', 'white', 'BoxOpacity', 0);
% Display video
step(hVideoOut, [input(:,:,1) Stabilized]);

end
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Release

Here you call the release method on the objects to close any open files and
devices.

release(hVideoSource);

Conclusion

Using the Computer Vision System Toolbox™ functionality from MATLAB
command line it is easy to implement complex systems like video stabilization.

Appendix
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The following helper function is used in this example.

• updatesearch.m

Measure Angle Between Lines
The Hough Transform, Find Local Maxima, and Hough Lines blocks enable
you to find lines in images. With the Draw Shapes block, you can annotate
images. In the following example, you use these capabilities to draw lines on
the edges of two beams and measure the angle between them.

Running this example requires a DSP System Toolbox license.

ex_vision_measure_angle_btwn_lines

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

1

Color Space
Conversion

Computer Vision System Toolbox >
Conversions

1

Edge Detection Computer Vision System Toolbox >
Analysis & Enhancement

1

Hough Transform Computer Vision System Toolbox >
Transforms

1

Hough Lines Computer Vision System Toolbox >
Transforms

1

Find Local
Maxima

Computer Vision System Toolbox >
Statistics

1
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Block Library Quantity

Draw Shapes Computer Vision System Toolbox > Text
& Graphics

1

Video Viewer Computer Vision System Toolbox > Sinks 3

Submatrix DSP System Toolbox > Math Functions
> Matrices and Linear Algebra > Matrix
Operations

4

Selector Simulink > Signal Routing 4

MATLAB
Function

Simulink > User-Defined Functions 1

Terminator Simulink > Sinks 1

Display Simulink > Sinks 1

2 Use the Image From File block to import an image into the Simulink model.
Set the parameters as follows:

• File name = gantrycrane.png

• Sample time = 1

3 Use the Color Space Conversion block to convert the RGB image into the
Y’CbCr color space. You perform this conversion to separate the luma
information from the color information. Accept the default parameters.

Note In this example, you segment the image using a thresholding
operation that performs best on the Cb channel of the Y’CbCr color space.

4 Use the Selector and Selector1 blocks to separate the Y’ (luminance) and
Cb (chrominance) components from the main signal.
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The Selector block separates the Y’ component from the entire signal. Set
its block parameters as follows:

• Number of input dimensions = 3

• Index mode = One-based

• 1 Index Option = Select all

• 2 Index Option = Select all

• 3 Index Option = Index vector (dialog), Index = 1

The Selector1 block separates the Cb component from the entire signal.
Set its block parameters as follows:

• Number of input dimensions = 3

• Index mode = One-based

• 1 Index Option = Select all

• 2 Index Option = Select all

• 3 Index Option = Index vector (dialog), Index = 2

5 Use the Submatrix and Submatrix1 blocks to crop the Y’ and Cb matrices
to a particular region of interest (ROI). This ROI contains two beams that
are at an angle to each other. Set the parameters as follows:

• Starting row = Index

• Starting row index = 66

• Ending row = Index

• Ending row index = 150

• Starting column = Index

• Starting column index = 325

• Ending column = Index

• Ending column index = 400

6 Use the Edge Detection block to find the edges in the Cb portion of the
image. This block outputs a binary image. Set the Threshold scale
factor parameter to 1.
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7 Use the Hough Transform block to calculate the Hough matrix, which gives
you an indication of the presence of lines in an image. Select the Output
theta and rho values checkbox.

Note In step 11, you find the theta and rho values that correspond to the
peaks in the Hough matrix.

8 Use the Find Local Maxima block to find the peak values in the Hough
matrix. These values represent potential lines in the input image. Set
the parameters as follows:

• Neighborhood size = [11 11]

• Select the Input is Hough matrix spanning full theta range
checkbox.

• Uncheck the Output variable size signal checkbox.

Because you are expecting two lines, leave the Maximum number of
local maxima (N) parameter set to 2.

9 Use the Submatrix2 block to find the indices that correspond to the theta
values of the two peak values in the Hough matrix. Set the parameters as
follows:

• Starting row = Index

• Starting row index = 2

• Ending row = Index

• Ending row index = 2

The Idx port of the Find Local Maxima block outputs a matrix whose second
row represents the One-based indices of the theta values that correspond
to the peaks in the Hough matrix. Now that you have these indices, you
can use a Selector block to extract the corresponding theta values from the
vector output of the Hough Transform block.

10 Use the Submatrix3 block to find the indices that correspond to the rho
values of the two peak values in the Hough matrix. Set the parameters as
follows:
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• Ending row = Index

• Ending row index = 1

The Idx port of the Find Local Maxima block outputs a matrix whose first
row represents the One-based indices of the rho values that correspond to
the peaks in the Hough matrix. Now that you have these indices, you can
use a Selector block to extract the corresponding rho values from the vector
output of the Hough Transform block.

11 Use the Selector2 and Selector3 blocks to find the theta and rho values
that correspond to the peaks in the Hough matrix. These values, output
by the Hough Transform block, are located at the indices output by the
Submatrix2 and Submatrix3 blocks. Set both block parameters as follows:

• Index mode = One-based

• 1 Index Option = Index vector (port)

• Input port size = -1

You set the Index mode to One-based because the Find Local Maxima
block outputs One-based indices at the Idx port.

12 Use the Hough Lines block to find the Cartesian coordinates of lines that
are described by rho and theta pairs. Set the Sine value computation
method parameter to Trigonometric function.

13 Use the Draw Shapes block to draw the lines on the luminance portion of
the ROI. Set the parameters as follows:

• Shape = Lines

• Border color = White

14 Use the MATLAB Function block to calculate the angle between the two
lines. Copy and paste the following code into the block:

function angle = compute_angle(theta)

%Compute the angle value in degrees
angle = abs(theta(1)-theta(2))*180/pi;
%Always return an angle value less than 90 degrees
if (angle>90)
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angle = 180-angle;
end

15 Use the Display block to view the angle between the two lines. Accept the
default parameters.

16 Use the Video Viewer blocks to view the original image, the ROI, and the
annotated ROI. Accept the default parameters.

17 Connect the blocks as shown in the following figure.

18 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

19 Run the model.
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The Video Viewer window displays the original image.

The Video Viewer1 window displays the ROI where two beams intersect.
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The Video Viewer2 window displays the ROI that has been annotated with
two white lines.
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The Display block shows a value of 58, wich is the angle in degrees between
the two lines on the annotated ROI.

You have now annotated an image with two lines and measured the angle
between them. For additional information, see the Hough Transform, Find
Local Maxima, Hough Lines, and Draw Shapes block reference pages.
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Stereo Image Rectification
This example shows how to use the estimateFundamentalMatrix,
estimateUncalibratedRectification, and detectSURFFeatures functions
to compute the rectification of two uncalibrated images, where the camera
intrinsics are unknown.

Stereo image rectification projects images onto a common image plane in such
a way that the corresponding points have the same row coordinates. This
process is useful for stereo vision, because the 2-D stereo correspondence
problem is reduced to a 1-D problem. As an example, stereo image rectification
is often used as a pre-processing step for computing disparity or creating
anaglyph images.

Step 1: Read Stereo Image Pair

Read in two color images of the same scene, which were taken from different
positions. Then, convert them to grayscale. Colors are not required for the
matching process.

I1 = rgb2gray(imread('yellowstone_left.png'));
I2 = rgb2gray(imread('yellowstone_right.png'));

Display both images side by side. Then, display a color composite
demonstrating the pixel-wise differences between the images.

imshowpair(I1, I2,'montage');
title('I1 (left); I2 (right)');
figure; imshowpair(I1,I2,'ColorChannels','red-cyan');
title('Composite Image (Red - Left Image, Cyan - Right Image)');
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There is an obvious offset between the images in orientation and position.
The goal of rectification is to transform the images, aligning them such that
corresponding points will appear on the same rows in both images.

Step 2: Collect Interest Points from Each Image

The rectification process requires a set of point correspondences between the
two images. To generate these correspondences, you will collect points of
interest from both images, and then choose potential matches between them.
Use detectSURFFeatures to find blob-like features in both images.

blobs1 = detectSURFFeatures(I1, 'MetricThreshold', 2000);
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blobs2 = detectSURFFeatures(I2, 'MetricThreshold', 2000);

Visualize the location and scale of the thirty strongest SURF features in I1
and I2. Notice that not all of the detected features can be matched because
they were either not detected in both images or because some of them were
not present in one of the images due to camera motion.

figure; imshow(I1); hold on;
plot(blobs1.selectStrongest(30));
title('Thirty strongest SURF features in I1');

figure; imshow(I2); hold on;
plot(blobs2.selectStrongest(30));
title('Thirty strongest SURF features in I2');
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Step 3: Find Putative Point Correspondences

Use the extractFeatures and matchFeatures functions to find putative
point correspondences. For each blob, compute the SURF feature vectors
(descriptors).

[features1, validBlobs1] = extractFeatures(I1, blobs1);
[features2, validBlobs2] = extractFeatures(I2, blobs2);

Use the sum of absolute differences (SAD) metric to determine indices of
matching features.

indexPairs = matchFeatures(features1, features2, 'Metric', 'SAD', ...
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'MatchThreshold', 5);

Retrieve locations of matched points for each image

matchedPoints1 = validBlobs1(indexPairs(:,1),:);
matchedPoints2 = validBlobs2(indexPairs(:,2),:);

Show matching points on top of the composite image, which combines stereo
images. Notice that most of the matches are correct, but there are still some
outliers.

figure; showMatchedFeatures(I1, I2, matchedPoints1, matchedPoints2);
legend('Putatively matched points in I1', 'Putatively matched points in I2'
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Step 4: Remove Outliers Using Epipolar Constraint

The correctly matched points must satisfy epipolar constraints. This means
that a point must lie on the epipolar line determined by its corresponding
point. You will use the estimateFundamentalMatrix function to compute the
fundamental matrix and find the inliers that meet the epipolar constraint.

[fMatrix, epipolarInliers, status] = estimateFundamentalMatrix(...
matchedPoints1, matchedPoints2, 'Method', 'RANSAC', ...
'NumTrials', 10000, 'DistanceThreshold', 0.1, 'Confidence', 99.99);

if status ~= 0 || isEpipoleInImage(fMatrix, size(I1)) ...
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|| isEpipoleInImage(fMatrix', size(I2))
error(['Either not enough matching points were found or '...

'the epipoles are inside the images. You may need to '...
'inspect and improve the quality of detected features ',...
'and/or improve the quality of your images.']);

end

inlierPoints1 = matchedPoints1(epipolarInliers, :);
inlierPoints2 = matchedPoints2(epipolarInliers, :);

figure; showMatchedFeatures(I1, I2, inlierPoints1, inlierPoints2);
legend('Inlier points in I1', 'Inlier points in I2');
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Step 5: Rectify Images

Use the estimateUncalibratedRectification function to compute the
rectification transformations. These can be used to transform the images,
such that the corresponding points will appear on the same rows.

[t1, t2] = estimateUncalibratedRectification(fMatrix, ...
inlierPoints1.Location, inlierPoints2.Location, size(I2));

tform1 = projective2d(t1);
tform2 = projective2d(t2);

Rectify the images using projective transformations, tform1 and tform2. Show
a color composite of the rectified images demonstrating point correspondences.

I1Rect = imwarp(I1, tform1, 'OutputView', imref2d(size(I1)));
I2Rect = imwarp(I2, tform2, 'OutputView', imref2d(size(I2)));

% transform the points to visualize them together with the rectified images
pts1Rect = transformPointsForward(tform1, inlierPoints1.Location);
pts2Rect = transformPointsForward(tform2, inlierPoints2.Location);

figure; showMatchedFeatures(I1Rect, I2Rect, pts1Rect, pts2Rect);
legend('Inlier points in rectified I1', 'Inlier points in rectified I2');
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Crop the overlapping area of the rectified images. You can use red-cyan stereo
glasses to see the 3D effect.

Irectified = cvexTransformImagePair(I1, tform1, I2, tform2);
figure, imshow(Irectified);
title('Rectified Stereo Images (Red - Left Image, Cyan - Right Image)');
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Step 6: Generalize The Rectification Process

The parameters used in the above steps have been set to fit the two
particular stereo images. To process other images, you can use the
cvexRectifyStereoImages function, which contains additional logic to
automatically adjust the rectification parameters. The image below shows the
result of processing a pair of images using this function.

cvexRectifyImages('parkinglot_left.png', 'parkinglot_right.png');
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Find Camera Parameters with the Camera Calibrator

In this section...

“Camera Calibrator Overview” on page 3-74

“Calibration Workflow” on page 3-74

“Image, Camera, and Pattern Preparation” on page 3-75

“Open the Camera Calibrator” on page 3-79

“Load Images” on page 3-81

“Calibrate” on page 3-84

“Evaluate Calibration Results” on page 3-85

“Improve Calibration” on page 3-91

“Export Camera Parameters” on page 3-94

“File Management” on page 3-94

“Views and Layout” on page 3-95

“Camera Calibrator MATLAB functions” on page 3-95

Camera Calibrator Overview
You can use the camera calibrator to estimate camera intrinsics, extrinsics,
and lens distortion parameters. You can use these camera parameters for
various computer vision applications. These applications include removing
the effects of lens distortion from an image, measuring planar objects, or 3-D
reconstruction from multiple cameras.

Calibration Workflow

Camera calibration using the calibrator workflow can be described in five
basic steps.
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1 Load images.

2 Calibrate the images.

3 Evaluate results.

4 Make desired improvements, and recalibrate.

5 Export the parameters to an XML file.

In some cases, the default values work well, and you do not need to make
any improvements before exporting parameters. The foundation suite of
“Camera Calibrator MATLAB functions” on page 3-95 used by the calibrator,
provide the workflow for calibration and can be used directly in the MATLAB
workspace.

Image, Camera, and Pattern Preparation
For best results, use between 10 and 20 images. The calibrator requires at
least three images. For greater calibration accuracy, follow the instructions
outlined for preparing the pattern, setting up the camera, and capturing
the images.

Checkerboard Pattern

A checkerboard pattern is a convenient calibration target. If you want to use
a different pattern to extract key points, you will need to use the camera
calibration MATLAB functions directly. See “Camera Calibrator MATLAB
functions” on page 3-95 for the list of functions.

You can make your own calibration pattern by printing the checkerboard
pattern. This checkerboard pattern satisfies the following requirements for
proper calibration:

• The length, (the longer side) must be greater than the width, (the short
side).

• The pattern must also contain two black corners opposite two white
corners. This criteria serves to determine the orientation of the pattern.

• Attach the checkerboard printout to a flat surface. Imperfections on the
surface can affect the accuracy of the calibration.
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• Physically measure one side of the checkerboard square. You need this
measurement for calibration. The size of the squares can vary depending
on printer settings.

• Set up the pattern with as little background clutter as possible to improve
the detection speed.

Camera Setup

To properly calibrate your camera, follow these rules:

• Keep the pattern in focus, but do not use auto-focus.

• Do not change zoom settings between images, otherwise the focal length
changes.

Capture Images

For best results, use between 10 and 20 images. The calibrator requires at
least three images. For greater calibration accuracy:

• Take the images of the pattern at a distance roughly equal to the distance
from your camera to the objects of interest. For example, if you plan to
measure objects of interest at a distance of 2 meters, keep your pattern
approximately 2 meters from the camera.

• Place the checkerboard at an angle less than 45 degrees relative to the
camera plane.

• Do not modify the images. For example, do not crop them.

3-76



Find Camera Parameters with the Camera Calibrator

• Do not use auto-focus or change the zoom between images.

• Capture the images of a checkerboard pattern at different orientations
relative to the camera.

• Capture enough different images of the pattern so that you have covered
as much of the image frame as possible. Lens distortion increases radially
from the center of the image and sometimes is not uniform across the
image frame. To capture this lens distortion, the pattern must appear
close to the edges.
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The Calibrator works with a range of checkerboard square sizes. As a rule
of thumb, your checkerboard should fill at least 20% of the captured image.
For example, the preceding images were taken with a checkerboard square
size of 108mm.
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Open the Camera Calibrator
You can select the Camera Calibrator from the app tab on the MATLAB
desktop or by typing cameraCalibrator at the MATLAB command line.
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Load Images
To begin calibration, load the images of the checkerboard by clicking the Add
images icon. You can add images from multiple folders by clicking the Add
images button for each folder. After you select the images, a prompt appears
requesting the size of the checkerboard square. Enter the length of one side of
a square from the checkerboard pattern.

The calibrator automatically attempts to detect a checkerboard in each of
the images you selected to load. An Analyzing Images progress bar appears
indicating detection progress.

If any of the images are rejected, the Detection Results window appears,
which contains diagnostic information. The results indicate how many total
images were processed, how many were accepted, how many were rejected,
and, if any, how many duplicate images were skipped.
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To view the rejected images, click the view images button. The calibrator
rejects duplicate images. It also rejects images where the entire checkerboard
could not be detected. Possible reasons for no detection are a blurry image or
an extreme angle of the pattern. Detection takes longer with larger images or
with patterns containing a greater number of squares.

Detected Points
A list of images with IDs appear in the Data Browser window. The images
listed, are the ones that contain a detected pattern. Select the image from the
list in the Data Browser to view it in the Image pane.
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The Image pane displays the checkerboard image with green circles indicating
detected points. You can verify the corners were detected correctly using the
zoom controls on the View tab. The square indicates the (0,0) origin, and the
x and y arrows indicate the checkerboard axes orientation.

Calibrate
Once you are satisfied with the accepted images, click the Calibrate button
in the toolbar.

The default calibration settings assume the minimum set of camera
parameters. Start by running the calibration with the default settings.
After evaluating the results, you can try to improve calibration accuracy by
adjusting the settings and adding or removing images. Then, try to calibrate
again.

Calibration Algorithm

The calibration algorithm assumes a pinhole camera model:
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(X,Y,Z): world coordinates of a point
(x,y): coordinates of the corresponding image point
w: arbitrary scale factor
K: camera intrinsic matrix
R: matrix representing the 3-D rotation of the camera
t: translation of the camera relative to the world coordinate system

Camera calibration estimates the values of the intrinsic parameters, the
extrinsic parameters, and the distortion coefficients. There are two steps
involved in camera calibration:
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1 Solve for the intrinsics and extrinsics in closed form, assuming that lens
distortion is zero.[1]

2 Estimate all parameters simultaneously including the distortion coefficient
using nonlinear least-squares minimization (Levenberg–Marquardt
algorithm). Use the closed form solution from the preceding step as the
initial estimate of the intrinsics and extrinsics, and set the initial estimate
of the distortion coefficients to zero. [1][2]

Evaluate Calibration Results
You can evaluate calibration accuracy by examining the reprojection errors
and the camera extrinsics. You should also view the undistorted image. For
best calibration results, use all three methods of evaluation.
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Reprojection Errors

The reprojection errors are the distances in pixels between the detected and
the reprojected points. The camera calibrator calculates reprojection errors
by projecting the checkerboard points from world coordinates (defined by the
checkerboard), into image coordinates. These reprojected points are compared
to the corresponding detected points. As a rule of thumb, reprojection errors
should be less than one pixel.

The camera calibrator displays the reprojection errors as a bar graph and as
a scatter plot. Both of these visuals are expressed in pixels. You can toggle
between them using the button on the display. You can identify the images
that adversely contribute to the calibration from either one of the graphs. You
can then select and remove those images from the list in the Data Browser
window.
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The bar graph displays the mean reprojection error per image along with
the overall mean error. The bar labels correspond to the image IDs. The
highlighted bar corresponds to the selected image.

You can select an image in either of the following ways:

• Clicking the corresponding bar in the graph.

• Select the image from the list in the Data Browser window.

To select multiple images or a range of images:

• (Multiple Images) Hold down the Ctrl key.

• (Range of Images) Hold down the Shift key.

The scatter plot displays the reprojection errors for each point. The plus
markers correspond to the points in the selected image. A good calibration
typically results in a compact cloud of points. Outliers indicate potential
issues with the corresponding images. To improve accuracy, consider
removing those images.
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Extrinsic Parameter Visualization

The 3-D extrinsic parameters plot provides a camera-centric view of the
patterns and a pattern-centric view of the camera. The camera-centric view
is helpful if the camera was stationary when the images were captured.
The pattern-centric view is helpful if the pattern was stationary. Use the
toggle button to switch between the two visuals. The highlighted data in
the visualizations correspond to the selected image in the list. Examine the
relative positions of the pattern and the camera to see if they match what
you expect. For example, if the visual displays a pattern behind the camera,
it indicates an error in calibration.
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Show Undistorted Image

You can view the effects of removing lens distortion by clicking the Show
Undistorted button in the image pane. If the calibration was accurate, the
distorted lines in the image become straight.
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It is important to check the undistorted images even if the reprojection errors
are low. Sometimes, if the pattern only covers a small percentage of the
image, the calibration achieves low reprojection errors, but the distortion
estimation is incorrect.
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Improve Calibration
To improve the calibration, you can remove high-error images, add more
images, or modify the calibrator settings.

Add and Delete Images

You can improve calibration by adding more images. Consider adding more
images if:

• You have less than 10 images.

• The patterns do not cover enough of the image frame.

• The patterns in your images do not have enough variation in orientation
with respect to the camera.

You can also improve calibration by removing images that:

• Have a high mean reprojection error

• Are blurry

• Contain a checkerboard at an angle greater than 45 degrees relative to
the camera plane

• Contain incorrectly detected checkerboard points

Change the Number of Radial Distortion Coefficients

You can specify 2 or 3 radial distortion coefficients by selecting the
corresponding radio button. Radial distortion occurs when light rays bend a
greater amount near the edges of a lens than they do at its optical center. The
smaller the lens, the greater the distortion.
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The radial distortion coefficients model this type of distortion. The distorted
points are denoted as (xdistorted, ydistorted).

xdistorted = x(1 + k1*r
2 + k2*r

4 + k3*r
6)

ydistorted= y(1 + k1*r
2 + k2*r

4 + k3*r
6)

where

x, y: undistorted pixel locations
k1, k2, and k3: radial distortion coefficients of the lens
r2: x2 + y2

Typically, two coefficients are sufficient for calibration. For severe distortion,
as in the case of a wide-angle lens, you can include k3. The undistorted pixel
locations are in normalized image coordinates, with the origin at the optical
center. The coordinates are expressed in world units.

Compute Skew

When you select the Compute Skew check box, the calibrator estimates
the image axes skew. Some camera sensors contain imperfections which
cause the x and y axis to not be perpendicular, which results from pixels
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not being rectangular. This defect can be modeled using a skew parameter.
If you do not select the check box, the image axes are assumed to be exactly
perpendicular, which is the case for most modern cameras.

Compute Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not
parallel. The tangential distortion coefficients model this type of distortion.

The distorted points are denoted as (xdistorted, ydistorted).

xdistorted = x + [2 * p1 * y + p2 * (r
2 + 2 * x2)]

ydistorted = y + [p1 * (r
2 + 2*y2) + 2 * p2 * x]

where
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x, y = undistorted pixel locations
p1 and p2 = tangential distortion coefficients of the lens
r2 = x2 + y2

The undistorted pixel locations are in normalized image coordinates, with the
origin at the optical center. The coordinates are in world units.

When you select the Compute Tangential Distortion check box, the
calibrator estimates the tangential distortion coefficients. Otherwise, the
calibrator sets the tangential distortion coefficients to zero.

Export Camera Parameters
When you are satisfied with calibration accuracy, click the Export Camera
Parameters button.

The calibrator creates a vision.CameraParameters object in your workspace.
The object contains the intrinsic and extrinsic parameters of the camera,
and the distortion coefficients. You can use this object for various computer
vision tasks, such as image undistortion, measuring planar objects, and 3-D
reconstruction. See “Measuring Planar Objects with a Calibrated Camera”
on page 3-2.

File Management

New Session
You can use the new session feature to start a new calibration session, such
as when you want to clear your session to calibrate another camera. Click the
New Session button to name and save, or cancel the current session.

Open Session

Use the open session feature to browse and open a previously saved
calibration session.
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Save Session

Use the save session feature to save the current calibration session.

Add Images

To begin calibration, load the images of the checkerboard by clicking the
Add images button. You can add images from multiple folders by clicking
the Add images button for each folder. See the “Load Images” on page 3-81
section for details.

Views and Layout
The View tab allows you to select various layouts for the calibrator user
interface. It also provides zoom features. The Default Layout button is
available on both the View and the Calibration tabs.

Camera Calibrator MATLAB functions
You can use these Camera Calibrator functions directly, to calculate and
produce camera parameters.

• generateCheckerboardPoints

• detectCheckerboardPoints

• estimateCameraParameters

• undistortImage

• showExtrinsics

• showReprojectionErrors

• vision.CameraParameters

References
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See Also cameraCalibrator | showReprojectionErrors | showExtrinsics
| undistortImage | detectCheckerboardPoints |
generateCheckerboardPointsvision.CameraParameters |

Related
Examples

• “Measuring Planar Objects with a Calibrated Camera” on page 3-2
• Checkerboard pattern

External
Web Sites

• Caltech Camera Calibration Toolbox for MATLAB

3-96

http://www.vision.caltech.edu/bouguetj/calib_doc/


Stereo Vision

Stereo Vision
This example shows how to compute the depth map between two rectified
stereo images. See the Image Rectification Example to learn about the details
behind rectification. In this example we use block matching, which is the
standard algorithm for high-speed stereo vision in hardware systems [7]. We
first explore basic block matching, and then apply dynamic programming to
improve accuracy, and image pyramiding to improve speed.

Stereo vision is the process of recovering depth from camera images by
comparing two or more views of the same scene. Simple, binocular stereo uses
only two images, typically taken with parallel cameras that were separated
by a horizontal distance known as the "baseline." The output of the stereo
computation is a disparity map (which is translatable to a range image) which
tells how far each point in the physical scene was from the camera.

Step 1. Read Stereo Image Pair

Here we read in the color stereo image pair and convert the images to
gray scale for the matching process. Using color images may provide
some improvement in accuracy, but it is more efficient to work with only
one-channel images. For this we use the ImageDataTypeConverter and the
ColorSpaceConverter System objects. Below we show the left camera image
and a color composite of both images so that one can easily see the disparity
between them.

hIdtc = vision.ImageDataTypeConverter;
hCsc = vision.ColorSpaceConverter('Conversion','RGB to intensity');
leftI3chan = step(hIdtc,imread('vipstereo_hallwayLeft.png'));
leftI = step(hCsc,leftI3chan);
rightI3chan = step(hIdtc,imread('vipstereo_hallwayRight.png'));
rightI = step(hCsc,rightI3chan);

figure(1), clf;
imshow(rightI3chan), title('Right image');

figure(2), clf;
imshowpair(rightI,leftI,'ColorChannels','red-cyan'), axis image;
title('Color composite (right=red, left=cyan)');
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Step 2. Basic Block Matching

Next we perform basic block matching. For every pixel in the right image,
we extract the 7-by-7-pixel block around it and search along the same row in
the left image for the block that best matches it. Here we search in a range
of pixels around the pixel’s location in the first image, and we use the
sum of absolute differences (SAD) to compare the image regions. We need
only search over columns and not over rows because the images are rectified.
We use the TemplateMatcher System object to perform this block matching
between each block and the region of interest.

Dbasic = zeros(size(leftI), 'single');
disparityRange = 15;

3-99



3 Registration and Stereo Vision

% Selects (2*halfBlockSize+1)-by-(2*halfBlockSize+1) block.
halfBlockSize = 3;
blockSize = 2*halfBlockSize+1;
% Allocate space for all template matcher System objects.
tmats = cell(blockSize);

% Initialize progress bar
hWaitBar = waitbar(0, 'Performing basic block matching...');
nRowsLeft = size(leftI, 1);

% Scan over all rows.
for m=1:nRowsLeft

% Set min/max row bounds for image block.
minr = max(1,m-halfBlockSize);
maxr = min(nRowsLeft,m+halfBlockSize);
% Scan over all columns.
for n=1:size(leftI,2)

minc = max(1,n-halfBlockSize);
maxc = min(size(leftI,2),n+halfBlockSize);
% Compute disparity bounds.
mind = max( -disparityRange, 1-minc );
maxd = min( disparityRange, size(leftI,2)-maxc );

% Construct template and region of interest.
template = rightI(minr:maxr,minc:maxc);
templateCenter = floor((size(template)+1)/2);
roi = [minc+templateCenter(2)+mind-1 ...

minr+templateCenter(1)-1 ...
maxd-mind+1 1];

% Lookup proper TemplateMatcher object; create if empty.
if isempty(tmats{size(template,1),size(template,2)})

tmats{size(template,1),size(template,2)} = ...
vision.TemplateMatcher('ROIInputPort',true);

end
thisTemplateMatcher = tmats{size(template,1),size(template,2)};

% Run TemplateMatcher object.
loc = step(thisTemplateMatcher, leftI, template, roi);
Dbasic(m,n) = loc(1) - roi(1) + mind;

end
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waitbar(m/nRowsLeft,hWaitBar);
end

close(hWaitBar);

In the results below, the basic block matching does well, as the correct shape
of the stereo scene is recovered. However, there are noisy patches and bad
depth estimates everywhere, especially on the ceiling. These are caused when
no strong image features appear inside of the 7-by-7-pixel windows being
compared. Then the matching process is subject to noise since each pixel
chooses its disparity independently of all the other pixels.

For display purposes, we saturate the depth map to have only positive values.
In general, slight angular misalignment of the stereo cameras used for
image acquisition can allow both positive and negative disparities to appear
validly in the depth map. In this case, however, the stereo cameras were
near perfectly parallel, so the true disparities have only one sign. Thus this
correction is valid.

figure(3), clf;
imshow(Dbasic,[]), axis image, colormap('jet'), colorbar;
caxis([0 disparityRange]);
title('Depth map from basic block matching');
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Step 3. Sub-pixel Estimation

The disparity estimates returned by block matching are all integer-valued, so
the above depth map exhibits contouring effects where there are no smooth
transitions between regions of different disparity. This can be ameliorated by
incorporating sub-pixel computation into the matching metric. Previously we
only took the location of the minimum cost as the disparity, but now we take
into consideration the minimum cost and the two neighboring cost values. We
fit a parabola to these three values, and analytically solve for the minimum to
get the sub-pixel correction.

DbasicSubpixel= zeros(size(leftI), 'single');
tmats = cell(2*halfBlockSize+1);
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hWaitBar=waitbar(0,'Performing sub-pixel estimation...');
for m=1:nRowsLeft

% Set min/max row bounds for image block.
minr = max(1,m-halfBlockSize);
maxr = min(nRowsLeft,m+halfBlockSize);
% Scan over all columns.
for n=1:size(leftI,2)

minc = max(1,n-halfBlockSize);
maxc = min(size(leftI,2),n+halfBlockSize);
% Compute disparity bounds.
mind = max( -disparityRange, 1-minc );
maxd = min( disparityRange, size(leftI,2)-maxc );

% Construct template and region of interest.
template = rightI(minr:maxr,minc:maxc);
templateCenter = floor((size(template)+1)/2);
roi = [minc+templateCenter(2)+mind-1 ...

minr+templateCenter(1)-1 ...
maxd-mind+1 1];

% Lookup proper TemplateMatcher object; create if empty.
if isempty(tmats{size(template,1),size(template,2)})

tmats{size(template,1),size(template,2)} = ...
vision.TemplateMatcher('ROIInputPort',true,...
'BestMatchNeighborhoodOutputPort',true);

end
thisTemplateMatcher = tmats{size(template,1),size(template,2)};

% Run TemplateMatcher object.
[loc,a2] = step(thisTemplateMatcher, leftI, template, roi);
ix = single(loc(1) - roi(1) + mind);

% Subpixel refinement of index.
DbasicSubpixel(m,n) = ix - 0.5 * (a2(2,3) - a2(2,1)) ...

/ (a2(2,1) - 2*a2(2,2) + a2(2,3));
end
waitbar(m/nRowsLeft,hWaitBar);

end

close(hWaitBar);
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Re-running basic block matching, we achieve the result below where the
contouring effects are mostly removed and the disparity estimates are
correctly refined. This is especially evident along the walls.

figure(1), clf;
imshow(DbasicSubpixel,[]), axis image, colormap('jet'), colorbar;
caxis([0 disparityRange]);
title('Basic block matching with sub-pixel accuracy');

Step 4. Dynamic Programming

As mentioned above, basic block matching creates a noisy disparity image.
This can be improved by introducing a smoothness constraint. Basic block
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matching chooses the optimal disparity for each pixel based on its own cost
function alone. Now we want to allow a pixel to have a disparity with possibly
sub-optimal cost for it locally. This extra cost must be offset by increasing that
pixel’s agreement in disparity with its neighbors. In particular, we constrain
each disparity estimate to lie with values of its neighbors’ disparities,
where its neighbors are the adjacent pixels along an image row. The problem
of finding the optimal disparity estimates for a row of pixels now becomes one
of finding the "optimal path" from one side of the image to the other. To find
this optimal path, we use the underlying block matching metric as the cost
function and constrain the disparities to only change by a certain amount
between adjacent pixels. This is a problem that can be solved efficiently using
the technique of dynamic programming [3,4].

Ddynamic = zeros(size(leftI), 'single');
finf = 1e3; % False infinity
disparityCost = finf*ones(size(leftI,2), 2*disparityRange + 1, 'single');
disparityPenalty = 0.5; % Penalty for disparity disagreement between pixels
hWaitBar = waitbar(0,'Using dynamic programming for smoothing...');
% Scan over all rows.
for m=1:nRowsLeft

disparityCost(:) = finf;
% Set min/max row bounds for image block.
minr = max(1,m-halfBlockSize);
maxr = min(nRowsLeft,m+halfBlockSize);
% Scan over all columns.
for n=1:size(leftI,2)

minc = max(1,n-halfBlockSize);
maxc = min(size(leftI,2),n+halfBlockSize);
% Compute disparity bounds.
mind = max( -disparityRange, 1-minc );
maxd = min( disparityRange, size(leftI,2)-maxc );
% Compute and save all matching costs.
for d=mind:maxd

disparityCost(n, d + disparityRange + 1) = ...
sum(sum(abs(leftI(minr:maxr,(minc:maxc)+d) ...
- rightI(minr:maxr,minc:maxc))));

end
end

% Process scan line disparity costs with dynamic programming.
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optimalIndices = zeros(size(disparityCost), 'single');
cp = disparityCost(end,:);
for j=size(disparityCost,1)-1:-1:1

% False infinity for this level
cfinf = (size(disparityCost,1) - j + 1)*finf;
% Construct matrix for finding optimal move for each column
% individually.
[v,ix] = min([cfinf cfinf cp(1:end-4)+3*disparityPenalty;

cfinf cp(1:end-3)+2*disparityPenalty;
cp(1:end-2)+disparityPenalty;
cp(2:end-1);
cp(3:end)+disparityPenalty;
cp(4:end)+2*disparityPenalty cfinf;
cp(5:end)+3*disparityPenalty cfinf cfinf],[],1);

cp = [cfinf disparityCost(j,2:end-1)+v cfinf];
% Record optimal routes.
optimalIndices(j,2:end-1) = (2:size(disparityCost,2)-1) + (ix - 4);

end
% Recover optimal route.
[~,ix] = min(cp);
Ddynamic(m,1) = ix;
for k=1:size(Ddynamic,2)-1

Ddynamic(m,k+1) = optimalIndices(k, ...
max(1, min(size(optimalIndices,2), round(Ddynamic(m,k)) ) ) );

end
waitbar(m/nRowsLeft, hWaitBar);

end
close(hWaitBar);
Ddynamic = Ddynamic - disparityRange - 1;

The image below shows the stereo result refined by applying dynamic
programming to each row individually. Dynamic programming does introduce
errors of its own by blurring the edges around object boundaries due to the
smoothness constraint. Also, it does nothing to smooth ’’between’’ rows, which
is why a striation pattern now appears on the left side foreground chair.
Despite these limitations, the result is significantly improved, with the noise
along the walls and ceiling nearly completely removed, and with many of the
foreground objects being better reconstructed.

figure(3), clf;

3-106



Stereo Vision

imshow(Ddynamic,[]), axis image, colormap('jet'), colorbar;
caxis([0 disparityRange]);
title('Block matching with dynamic programming');

Step 5. Image Pyramiding

While dynamic programming can improve the accuracy of the stereo
image, basic block matching is still an expensive operation, and dynamic
programming only adds to the burden. One solution is to use image
pyramiding and telescopic search to guide the block matching [5,6]. With the
full-size image, we had to search over a -pixel range to properly detect
the disparities in the image. If we had down-sized the image by a factor of
two, however, this search could have been reduced to pixels on an image a
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quarter of the area, meaning this step would cost a factor of 8 less. Then we
use the disparity estimates from this down-sized operation to seed the search
on the larger image, and therefore we only need to search over a smaller
range of disparities.

The below example performs this telescoping stereo matching using a
four-level image pyramid. We use the Pyramid and GeometricScaler System
objects, and we have wrapped up the preceding block matching code into the
function vipstereo_blockmatch.m for simplicity. The disparity search range
is only pixels at each level, making it over 5x faster to compute than basic
block matching. Yet the results compare favorably.

% Construct a four-level pyramid
pyramids = cell(1,4);
pyramids{1}.L = leftI;
pyramids{1}.R = rightI;
for i=2:length(pyramids)

hPyr = vision.Pyramid('PyramidLevel',1);
pyramids{i}.L = single(step(hPyr,pyramids{i-1}.L));
pyramids{i}.R = single(step(hPyr,pyramids{i-1}.R));

end
% Declare original search radius as +/-4 disparities for every pixel.
smallRange = single(3);
disparityMin = repmat(-smallRange, size(pyramids{end}.L));
disparityMax = repmat( smallRange, size(pyramids{end}.L));
% Do telescoping search over pyramid levels.
for i=length(pyramids):-1:1

Dpyramid = vipstereo_blockmatch(pyramids{i}.L,pyramids{i}.R, ...
disparityMin,disparityMax,...
false,true,3,...
true,... % Waitbar
['Performing level-',num2str(length(pyramids)-i+1),...
' pyramid block matching...']); %Waitbar title

if i > 1
% Scale disparity values for next level.
hGsca = vision.GeometricScaler(...

'InterpolationMethod','Nearest neighbor',...
'SizeMethod','Number of output rows and columns',...
'Size',size(pyramids{i-1}.L));
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Dpyramid = 2*step(hGsca, Dpyramid);
% Maintain search radius of +/-smallRange.
disparityMin = Dpyramid - smallRange;
disparityMax = Dpyramid + smallRange;

end
end

figure(3), clf;
imshow(Dpyramid,[]), colormap('jet'), colorbar, axis image;
caxis([0 disparityRange]);
title('Four-level pyramid block matching');

Step 6. Combined Pyramiding and Dynamic Programming
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Finally we merge the above techniques and run dynamic programming
along with image pyramiding, where the dynamic programming is run on
the disparity estimates output by every pyramid level. The results compare
well with the highest-quality results we have obtained so far, and are still
achieved at a reduced computational burden versus basic block matching.

It is also possible to use sub-pixel methods with dynamic programming, and
we show the results of all three techniques in the second image. As before,
subpixel refinement reduces contouring effects and clearly improves accuracy.
The previous code has been bundled into vipstereo_blockmatch_combined.m,
which exposes all of the options previously presented as parameter-value
pairs.

DpyramidDynamic = vipstereo_blockmatch_combined(leftI,rightI, ...
'NumPyramids',3, 'DisparityRange',4, 'DynamicProgramming',true, ...
'Waitbar', true, ...
'WaitbarTitle', 'Performing combined pyramid and dynamic programming');

figure(3), clf;
imshow(DpyramidDynamic,[]), axis('image'), colorbar, colormap jet;
caxis([0 disparityRange]);
title('4-level pyramid with dynamic programming');

DdynamicSubpixel = vipstereo_blockmatch_combined(leftI,rightI, ...
'NumPyramids',3, 'DisparityRange',4, 'DynamicProgramming',true, ...
'Subpixel', true, ...
'Waitbar', true, ...
'WaitbarTitle', ['Performing combined pyramid and dynamic ',...
'programming with sub-pixel estimation']);

figure(4), clf;
imshow(DdynamicSubpixel,[]), axis image, colormap('jet'), colorbar;
caxis([0 disparityRange]);
title('Pyramid with dynamic programming and sub-pixel accuracy');
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Step 7. Backprojection

With a stereo depth map and knowledge of the intrinsic parameters of the
camera, it is possible to backproject image pixels into 3D points [1,2]. The
camera intrinsics, also known as the camera matrix, can be computed using
the Camera Calibrator app or the estimateCameraParameters function. The
camera matrix has the form

K = [ focal_length_x 0 0;
skew focal_length_y 0;

camera_center_x camera_center_y 1];

This relates 3D world coordinates to homogenized camera coordinates via:
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With the camera matrix, we can backproject each image pixel into a 3D ray
that describes all the world points that could have been projected onto that
pixel on the image. This leaves unknown the distance of that point to the
camera. This is provided by the disparity measurements of the stereo depth
map as:

Note that unitless pixel disparities cannot be used directly in this equation.
Also, if the stereo baseline (the distance between the two cameras) is not
well-known, it introduces more unknowns. Thus we transform this equation
into the general form:

We solve for the two unknowns via least squares by collecting a few
corresponding depth and disparity values from the scene and using them as
tie points. The full technique is shown below.

% Camera matrix
K = [409.4433 0 0

0 416.0865 0
204.1225 146.4133 1];

% Create a sub-sampled grid for backprojection.
dec = 2;
[X,Y] = meshgrid(1:dec:size(leftI,2),1:dec:size(leftI,1));
P = [X(:), Y(:), ones(numel(X), 1, 'single')] / K;
Disp = max(0,DdynamicSubpixel(1:dec:size(leftI,1),1:dec:size(leftI,2)));
hMedF = vision.MedianFilter('NeighborhoodSize',[5 5]);
Disp = step(hMedF,Disp); % Median filter to smooth out noise.
% Derive conversion from disparity to depth with tie points:
knownDs = [15 9 2]'; % Disparity values in pixels
knownZs = [4 4.5 6.8]';
% World z values in meters based on scene measurements.
ab = [1./knownDs ones(size(knownDs), 'single')] \ knownZs; % least squares
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% Convert disparity to z (distance from camera)
ZZ = ab(1)./Disp(:) + ab(2);
% Threshold to [0,8] meters.
ZZdisp = min(8,max(0, ZZ ));
Pd = bsxfun(@times,P,ZZ);
% Remove near points
bad = Pd(:, 3)>8 | Pd(:, 3)<3;
Pd = Pd(~bad, :);

In the reprojection, the walls, ceiling, and floor all appear mutually
orthogonal, and the scene is well reconstructed. Since camera calibration also
gives intrinsics with units, we can assign units to the backprojected points.
The dimensions of the plot are given in meters, and one can verify that the
sizes of objects and the scene appear correct.

% Collect quantized colors for point display
Colors = rightI3chan(1:dec:size(rightI,1),1:dec:size(rightI,2),:);
Colors = reshape(Colors,[size(Colors,1)*size(Colors,2) size(Colors,3)]);
Colors = Colors(~bad,:);
cfac = 20;
C8 = round(cfac*Colors);
[U,I,J] = unique(C8,'rows');
C8 = C8/cfac;

figure(2), clf, hold on, axis equal;
for i=1:size(U,1)

plot3(-Pd(J==i,1),-Pd(J==i,3),-Pd(J==i,2),'.','Color',C8(I(i),:));
end
view(161,14), grid on;
xlabel('x (meters)'), ylabel('z (meters)'), zlabel('y (meters)');
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Find Fundamental Matrix Describing Epipolar Geometry

Find Fundamental Matrix Describing Epipolar Geometry
In computer vision, the fundamental matrix is a 3×3 matrix which relates
corresponding points in stereo images. When two cameras view a 3D scene
from two distinct positions, there are a number of geometric relations
between the 3D points and their projections onto the 2D images that lead to
constraints between the image points. Two images of the same scene are
related by epipolar geometry.

This example takes two stereo images, computes the fundamental matrix from
their corresponding points, displays the original stereo images, corresponding
points, and epipolar lines for this and for the rectified images.

% Load the stereo images and feature points which are already matched.
I1 = im2double(imread('yellowstone_left.png'));
I2 = im2double(imread('yellowstone_right.png'));
load yellowstone_matched_points;

% Display point correspondences. Notice that the matching points are in
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% different rows, indicating that the stereo pair is not rectified.
showMatchedFeatures(I1, I2, matched_points1, matched_points2, 'montage')
title('Original images and matching feature points');

% Compute the fundamental matrix from the corresponding points.
f = estimateFundamentalMatrix(matched_points1, matched_points2,...

'Method', 'Norm8Point');

% Compute the rectification transformations.
[t1, t2] = estimateUncalibratedRectification(f, matched_points1, ...

matched_points2, size(I2));

% Rectify the stereo images using projective transformations t1 and t2.
geoTransf = vision.GeometricTransformer('TransformMatrixSource', ...

'Input port', 'OutputImagePositionSource', 'Property');
offset = [120 30]; % shift the coordinate system origin by an offset
geoTransf.OutputImagePosition = [-offset size(I1,2)+130 ...

size(I1,1)+150]; % [x y width height]
I1Rect = step(geoTransf, I1, t1);
I2Rect = step(geoTransf, I2, t2);

% Transform the points to visualize them together with the rectified ima
pts1Rect = tformfwd(matched_points1, maketform('projective', t1));
pts2Rect = tformfwd(matched_points2, maketform('projective', t2));

% Compensate for the shift in the coordinate system origin.
pts1Rect = bsxfun(@plus, pts1Rect, offset);
pts2Rect = bsxfun(@plus, pts2Rect, offset);

% Notice that the matching points now reside on the same rows. This also
% means that the epipolar lines are parallel to the x-axis.
figure; showMatchedFeatures(I1Rect, I2Rect, pts1Rect, pts2Rect, 'montage
title('Rectified images and the corresponding feature points');
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Object Tracking

In this section...

“Using Kalman Filter for Object Tracking” on page 4-2

“Motion-Based Multiple Object Tracking” on page 4-16

Using Kalman Filter for Object Tracking
This example shows how to use the vision.KalmanFilter object and
configureKalmanFilter function to track objects.

This example is a function with its main body at the top and helper routines
in the form of nested functions below.

function kalmanFilterForTracking

Introduction

The Kalman filter has many uses, including applications in control,
navigation, computer vision, and time series econometrics. This example
illustrates how to use the Kalman filter for tracking objects and focuses on
three important features:

• Prediction of object’s future location

• Reduction of noise introduced by inaccurate detections

• Facilitating the process of association of multiple objects to their tracks

Challenges of Object Tracking

Before showing the use of Kalman filter, let us first examine the challenges of
tracking an object in a video. The following video shows a green ball moving
from left to right on the floor.

showDetections();
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The white region over the ball highlights the pixels detected using
vision.ForegroundDetector, which separates moving objects from the
background. The background subtraction only finds a portion of the ball
because of the low contrast between the ball and the floor. In other words, the
detection process is not ideal and introduces noise.

To easily visualize the entire object trajectory, we overlay all video frames
onto a single image. The "+" marks indicate the centroids computed using
blob analysis.

showTrajectory();
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Two issues can be observed:

1 The region’s center is usually different from the ball’s center. In other
words, there is an error in the measurement of the ball’s location.

2 The location of the ball is not available when it is occluded by the box, i.e.
the measurement is missing.

Both of these challenges can be addressed by using the Kalman filter.

Track a Single Object Using Kalman Filter
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Using the video which was seen earlier, the trackSingleObject function
shows you how to:

• Create vision.KalmanFilter by using configureKalmanFilter

• Use predict and correctmethods in a sequence to eliminate noise present
in the tracking system

• Use predict method by itself to estimate ball’s location when it is occluded
by the box

The selection of the Kalman filter parameters can be challenging. The
configureKalmanFilter function helps simplify this problem. More details
about this can be found further in the example.

The trackSingleObject function includes nested helper functions. The
following top-level variables are used to transfer the data between the nested
functions.

frame = []; % A video frame
detectedLocation = []; % The detected location
trackedLocation = []; % The tracked location
label = ''; % Label for the ball
utilities = []; % Utilities used to process the video

The procedure for tracking a single object is shown below.

function trackSingleObject(param)
% Create utilities used for reading video, detecting moving objects,
% and displaying the results.
utilities = createUtilities(param);

isTrackInitialized = false;
while ~isDone(utilities.videoReader)

frame = readFrame();

% Detect the ball.
[detectedLocation, isObjectDetected] = detectObject(frame);

if ~isTrackInitialized
if isObjectDetected
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% Initialize a track by creating a Kalman filter when the ball is
% detected for the first time.
initialLocation = computeInitialLocation(param, detectedLocation);
kalmanFilter = configureKalmanFilter(param.motionModel, ...

initialLocation, param.initialEstimateError, ...
param.motionNoise, param.measurementNoise);

isTrackInitialized = true;
trackedLocation = correct(kalmanFilter, detectedLocation);
label = 'Initial';

else
trackedLocation = [];
label = '';

end

else
% Use the Kalman filter to track the ball.
if isObjectDetected % The ball was detected.

% Reduce the measurement noise by calling predict followed by
% correct.
predict(kalmanFilter);
trackedLocation = correct(kalmanFilter, detectedLocation);
label = 'Corrected';

else % The ball was missing.
% Predict the ball's location.
trackedLocation = predict(kalmanFilter);
label = 'Predicted';

end
end

annotateTrackedObject();
end % while

showTrajectory();
end

There are two distinct scenarios that the Kalman filter addresses:
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• When the ball is detected, the Kalman filter first predicts its state at the
current video frame, and then uses the newly detected object location to
correct its state. This produces a filtered location.

• When the ball is missing, the Kalman filter solely relies on its previous
state to predict the ball’s current location.

You can see the ball’s trajectory by overlaying all video frames.

param = getDefaultParameters(); % get Kalman configuration that works well
% for this example

trackSingleObject(param); % visualize the results
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Explore Kalman Filter Configuration Options

Configuring the Kalman filter can be very challenging. Besides basic
understanding of the Kalman filter, it often requires experimentation in
order to come up with a set of suitable configuration parameters. The
trackSingleObject function, defined above, helps you to explore the various
configuration options offered by the configureKalmanFilter function.

The configureKalmanFilter function returns a Kalman filter object. You
must provide five input arguments.

kalmanFilter = configureKalmanFilter(MotionModel, InitialLocation,
InitialEstimateError, MotionNoise, MeasurementNoise)

TheMotionModel setting must correspond to the physical characteristics of
the object’s motion. You can set it to either a constant velocity or constant
acceleration model. The following example illustrates the consequences of
making a sub-optimal choice.

param = getDefaultParameters(); % get parameters that work well
param.motionModel = 'ConstantVelocity'; % switch from ConstantAcceleration

% to ConstantVelocity
% After switching motion models, drop noise specification entries
% corresponding to acceleration.
param.initialEstimateError = param.initialEstimateError(1:2);
param.motionNoise = param.motionNoise(1:2);

trackSingleObject(param); % visualize the results
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Notice that the ball emerged in a spot that is quite different from the
predicted location. From the time when the ball was released, it was subject
to constant deceleration due to resistance from the carpet. Therefore, constant
acceleration model was a better choice. If you kept the constant velocity
model, the tracking results would be sub-optimal no matter what you selected
for the other values.

Typically, you would set the InitialLocation input to the location where
the object was first detected. You would also set the InitialEstimateError
vector to large values since the initial state may be very noisy given that it is
derived from a single detection. The following figure demonstrates the effect
of misconfiguring these parameters.
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param = getDefaultParameters(); % get parameters that work well
param.initialLocation = [0, 0]; % location that's not based on an actual d
param.initialEstimateError = 100*ones(1,3); % use relatively small values

trackSingleObject(param); % visualize the results

With the misconfigured parameters, it took a few steps before the locations
returned by the Kalman filter align with the actual trajectory of the object.

The values for MeasurementNoise should be selected based on the
detector’s accuracy. Set the measurement noise to larger values for a less
accurate detector. The following example illustrates the noisy detections of a
misconfigured segmentation threshold. Increasing the measurement noise
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causes the Kalman filter to rely more on its internal state rather than the
incoming measurements, and thus compensates for the detection noise.

param = getDefaultParameters();
param.segmentationThreshold = 0.0005; % smaller value resulting in noisy de
param.measurementNoise = 12500; % increase the value to compensate

% for the increase in measurement noi

trackSingleObject(param); % visualize the results

Typically objects do not move with constant acceleration or constant velocity.
You use the MotionNoise to specify the amount of deviation from the ideal
motion model. When you increase the motion noise, the Kalman filter relies
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more heavily on the incoming measurements than on its internal state. Try
experimenting withMotionNoise parameter to learn more about its effects.

Now that you are familiar with how to use the Kalman filter and how to
configure it, the next section will help you learn how it can be used for
multiple object tracking.

Note: In order to simplify the configuration process in the above examples,
we used the configureKalmanFilter function. This function makes several
assumptions. See the function’s documentation for details. If you require
greater level of control over the configuration process, you can use the
vision.KalmanFilter object directly.

Track Multiple Objects Using Kalman Filter

Tracking multiple objects poses several additional challenges:

• Multiple detections must be associated with the correct tracks

• You must handle new objects appearing in a scene

• Object identity must be maintained when multiple objects merge into a
single detection

The vision.KalmanFilter object together with the
assignDetectionsToTracks function can help to solve the problems of

• Assigning detections to tracks

• Determining whether or not a detection corresponds to a new object, in
other words, track creation

• Just as in the case of an occluded single object, prediction can be used to
help separate objects that are close to each other

To learn more about using Kalman filter to track multiple objects, see the
example titled Motion-Based Multiple Object Tracking.

Utility Functions Used in the Example

Utility functions were used for detecting the objects and displaying the results.
This section illustrates how the example implemented these functions.
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Get default parameters for creating Kalman filter and for segmenting the ball.

function param = getDefaultParameters
param.motionModel = 'ConstantAcceleration';
param.initialLocation = 'Same as first detection';
param.initialEstimateError = 1E5 * ones(1, 3);
param.motionNoise = [25, 10, 1];
param.measurementNoise = 25;
param.segmentationThreshold = 0.05;

end

Read the next video frame from the video file.

function frame = readFrame()
frame = step(utilities.videoReader);

end

Detect and annotate the ball in the video.

function showDetections()
param = getDefaultParameters();
utilities = createUtilities(param);
trackedLocation = [];

idx = 0;
while ~isDone(utilities.videoReader)

frame = readFrame();
detectedLocation = detectObject(frame);
% Show the detection result for the current video frame.
annotateTrackedObject();

% To highlight the effects of the measurement noise, show the detection
% results for the 40th frame in a separate figure.
idx = idx + 1;
if idx == 40

combinedImage = max(repmat(utilities.foregroundMask, [1,1,3]), frame)
figure, imshow(combinedImage);

end
end % while

% Close the window which was used to show individual video frame.
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uiscopes.close('All');
end

Detect the ball in the current video frame.

function [detection, isObjectDetected] = detectObject(frame)
grayImage = rgb2gray(frame);
utilities.foregroundMask = step(utilities.foregroundDetector, grayImage);
detection = step(utilities.blobAnalyzer, utilities.foregroundMask);
if isempty(detection)

isObjectDetected = false;
else

% To simplify the tracking process, only use the first detected object.
detection = detection(1, :);
isObjectDetected = true;

end
end

Show the current detection and tracking results.

function annotateTrackedObject()
accumulateResults();
% Combine the foreground mask with the current video frame in order to
% show the detection result.
combinedImage = max(repmat(utilities.foregroundMask, [1,1,3]), frame);

if ~isempty(trackedLocation)
shape = 'circle';
region = trackedLocation;
region(:, 3) = 5;
combinedImage = insertObjectAnnotation(combinedImage, shape, ...

region, {label}, 'Color', 'red');
end
step(utilities.videoPlayer, combinedImage);

end

Show trajectory of the ball by overlaying all video frames on top of each other.

function showTrajectory
% Close the window which was used to show individual video frame.
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uiscopes.close('All');

% Create a figure to show the processing results for all video frames.
figure; imshow(utilities.accumulatedImage/2+0.5); hold on;
plot(utilities.accumulatedDetections(:,1), ...

utilities.accumulatedDetections(:,2), 'k+');

if ~isempty(utilities.accumulatedTrackings)
plot(utilities.accumulatedTrackings(:,1), ...

utilities.accumulatedTrackings(:,2), 'r-o');
legend('Detection', 'Tracking');

end
end

Accumulate video frames, detected locations, and tracked locations to show
the trajectory of the ball.

function accumulateResults()
utilities.accumulatedImage = max(utilities.accumulatedImage, frame);
utilities.accumulatedDetections ...

= [utilities.accumulatedDetections; detectedLocation];
utilities.accumulatedTrackings ...

= [utilities.accumulatedTrackings; trackedLocation];
end

For illustration purposes, select the initial location used by the Kalman filter.

function loc = computeInitialLocation(param, detectedLocation)
if strcmp(param.initialLocation, 'Same as first detection')

loc = detectedLocation;
else

loc = param.initialLocation;
end

end

Create utilities for reading video, detecting moving objects, and displaying
the results.

function utilities = createUtilities(param)
% Create System objects for reading video, displaying video, extracting
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% foreground, and analyzing connected components.
utilities.videoReader = vision.VideoFileReader('singleball.avi');
utilities.videoPlayer = vision.VideoPlayer('Position', [100,100,500,400])
utilities.foregroundDetector = vision.ForegroundDetector(...

'NumTrainingFrames', 10, 'InitialVariance', param.segmentationThreshold
utilities.blobAnalyzer = vision.BlobAnalysis('AreaOutputPort', false, ...

'MinimumBlobArea', 70, 'CentroidOutputPort', true);

utilities.accumulatedImage = 0;
utilities.accumulatedDetections = zeros(0, 2);
utilities.accumulatedTrackings = zeros(0, 2);

end

end

Motion-Based Multiple Object Tracking
This example shows how to perform automatic detection and motion-based
tracking of moving objects in a video from a stationary camera.

Detection of moving objects and motion-based tracking are important
components of many computer vision applications, including activity
recognition, traffic monitoring, and automotive safety. The problem of
motion-based object tracking can be divided into two parts:

1 detecting moving objects in each frame

2 associating the detections corresponding to the same object over time

The detection of moving objects uses a background subtraction algorithm
based on Gaussian mixture models. Morphological operations are applied
to the resulting foreground mask to eliminate noise. Finally, blob analysis
detects groups of connected pixels, which are likely to correspond to moving
objects.

The association of detections to the same object is based solely on motion.
The motion of each track is estimated by a Kalman filter. The filter is used
to predict the track’s location in each frame, and determine the likelihood of
each detection being assigned to each track.
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Track maintenance becomes an important aspect of this example. In any
given frame, some detections may be assigned to tracks, while other detections
and tracks may remain unassigned.The assigned tracks are updated using
the corresponding detections. The unassigned tracks are marked invisible.
An unassigned detection begins a new track.

Each track keeps count of the number of consecutive frames, where it
remained unassigned. If the count exceeds a specified threshold, the example
assumes that the object left the field of view and it deletes the track.

This example is a function with the main body at the top and helper routines
in the form of nested functions below.

function multiObjectTracking()

% Create system objects used for reading video, detecting moving objects,
% and displaying the results.
obj = setupSystemObjects();

tracks = initializeTracks(); % Create an empty array of tracks.

nextId = 1; % ID of the next track

% Detect moving objects, and track them across video frames.
while ~isDone(obj.reader)

frame = readFrame();
[centroids, bboxes, mask] = detectObjects(frame);
predictNewLocationsOfTracks();
[assignments, unassignedTracks, unassignedDetections] = ...

detectionToTrackAssignment();

updateAssignedTracks();
updateUnassignedTracks();
deleteLostTracks();
createNewTracks();

displayTrackingResults();
end
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Create System Objects

Create System objects used for reading the video frames, detecting foreground
objects, and displaying results.

function obj = setupSystemObjects()
% Initialize Video I/O
% Create objects for reading a video from a file, drawing the track
% objects in each frame, and playing the video.

% Create a video file reader.
obj.reader = vision.VideoFileReader('atrium.avi');
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% Create two video players, one to display the video,
% and one to display the foreground mask.
obj.videoPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400
obj.maskPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400

% Create system objects for foreground detection and blob analysis

% The foreground detector is used to segment moving objects from
% the background. It outputs a binary mask, where the pixel value
% of 1 corresponds to the foreground and the value of 0 corresponds
% to the background.

obj.detector = vision.ForegroundDetector('NumGaussians', 3, ...
'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7);

% Connected groups of foreground pixels are likely to correspond to
% objects. The blob analysis system object is used to find such gr
% (called 'blobs' or 'connected components'), and compute their
% characteristics, such as area, centroid, and the bounding box.

obj.blobAnalyser = vision.BlobAnalysis('BoundingBoxOutputPort', tru
'AreaOutputPort', true, 'CentroidOutputPort', true, ...
'MinimumBlobArea', 400);

end

Initialize Tracks

The initializeTracks function creates an array of tracks, where each track
is a structure representing a moving object in the video. The purpose of the
structure is to maintain the state of a tracked object. The state consists of
information used for detection to track assignment, track termination, and
display.

The structure contains the following fields:

• id : the integer ID of the track

• bbox : the current bounding box of the object; used for display

• kalmanFilter : a Kalman filter object used for motion-based tracking
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• age : the number of frames since the track was first detected

• totalVisibleCount : the total number of frames in which the track was
detected (visible)

• consecutiveInvisibleCount : the number of consecutive frames for which
the track was not detected (invisible).

Noisy detections tend to result in short-lived tracks. For this reason, the
example only displays an object after it was tracked for some number
of frames. This happens when totalVisibleCount exceeds a specified
threshold.

When no detections are associated with a track for several consecutive frames,
the example assumes that the object has left the field of view and deletes the
track. This happens when consecutiveInvisibleCount exceeds a specified
threshold. A track may also get deleted as noise if it was tracked for a short
time, and marked invisible for most of the of the frames.

function tracks = initializeTracks()
% create an empty array of tracks
tracks = struct(...

'id', {}, ...
'bbox', {}, ...
'kalmanFilter', {}, ...
'age', {}, ...
'totalVisibleCount', {}, ...
'consecutiveInvisibleCount', {});

end

Read a Video Frame

Read the next video frame from the video file.

function frame = readFrame()
frame = obj.reader.step();

end

Detect Objects
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The detectObjects function returns the centroids and the bounding boxes of
the detected objects. It also returns the binary mask, which has the same size
as the input frame. Pixels with a value of 1 correspond to the foreground, and
pixels with a value of 0 correspond to the background.

The function performs motion segmentation using the foreground detector.
It then performs morphological operations on the resulting binary mask to
remove noisy pixels and to fill the holes in the remaining blobs.

function [centroids, bboxes, mask] = detectObjects(frame)

% Detect foreground.
mask = obj.detector.step(frame);

% Apply morphological operations to remove noise and fill in holes.
mask = imopen(mask, strel('rectangle', [3,3]));
mask = imclose(mask, strel('rectangle', [15, 15]));
mask = imfill(mask, 'holes');

% Perform blob analysis to find connected components.
[~, centroids, bboxes] = obj.blobAnalyser.step(mask);

end

Predict New Locations of Existing Tracks

Use the Kalman filter to predict the centroid of each track in the current
frame, and update its bounding box accordingly.

function predictNewLocationsOfTracks()
for i = 1:length(tracks)

bbox = tracks(i).bbox;

% Predict the current location of the track.
predictedCentroid = predict(tracks(i).kalmanFilter);

% Shift the bounding box so that its center is at
% the predicted location.
predictedCentroid = int32(predictedCentroid) - bbox(3:4) / 2;
tracks(i).bbox = [predictedCentroid, bbox(3:4)];

end
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end

Assign Detections to Tracks

Assigning object detections in the current frame to existing tracks is done
by minimizing cost. The cost is defined as the negative log-likelihood of a
detection corresponding to a track.

The algorithm involves two steps:

Step 1: Compute the cost of assigning every detection to each track using
the distance method of the vision.KalmanFilter System object. The cost
takes into account the Euclidean distance between the predicted centroid of
the track and the centroid of the detection. It also includes the confidence of
the prediction, which is maintained by the Kalman filter. The results are
stored in an MxN matrix, where M is the number of tracks, and N is the
number of detections.

Step 2: Solve the assignment problem represented by the cost matrix using
the assignDetectionsToTracks function. The function takes the cost matrix
and the cost of not assigning any detections to a track.

The value for the cost of not assigning a detection to a track depends
on the range of values returned by the distance method of the
vision.KalmanFilter. This value must be tuned experimentally. Setting
it too low increases the likelihood of creating a new track, and may result
in track fragmentation. Setting it too high may result in a single track
corresponding to a series of separate moving objects.

The assignDetectionsToTracks function uses the Munkres’ version of the
Hungarian algorithm to compute an assignment which minimizes the total
cost. It returns an M x 2 matrix containing the corresponding indices of
assigned tracks and detections in its two columns. It also returns the indices
of tracks and detections that remained unassigned.

function [assignments, unassignedTracks, unassignedDetections] = ...
detectionToTrackAssignment()

nTracks = length(tracks);
nDetections = size(centroids, 1);
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% Compute the cost of assigning each detection to each track.
cost = zeros(nTracks, nDetections);
for i = 1:nTracks

cost(i, :) = distance(tracks(i).kalmanFilter, centroids);
end

% Solve the assignment problem.
costOfNonAssignment = 20;
[assignments, unassignedTracks, unassignedDetections] = ...

assignDetectionsToTracks(cost, costOfNonAssignment);
end

Update Assigned Tracks

The updateAssignedTracks function updates each assigned track with the
corresponding detection. It calls the correctmethod of vision.KalmanFilter
to correct the location estimate. Next, it stores the new bounding box, and
increases the age of the track and the total visible count by 1. Finally, the
function sets the invisible count to 0.

function updateAssignedTracks()
numAssignedTracks = size(assignments, 1);
for i = 1:numAssignedTracks

trackIdx = assignments(i, 1);
detectionIdx = assignments(i, 2);
centroid = centroids(detectionIdx, :);
bbox = bboxes(detectionIdx, :);

% Correct the estimate of the object's location
% using the new detection.
correct(tracks(trackIdx).kalmanFilter, centroid);

% Replace predicted bounding box with detected
% bounding box.
tracks(trackIdx).bbox = bbox;

% Update track's age.
tracks(trackIdx).age = tracks(trackIdx).age + 1;
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% Update visibility.
tracks(trackIdx).totalVisibleCount = ...

tracks(trackIdx).totalVisibleCount + 1;
tracks(trackIdx).consecutiveInvisibleCount = 0;

end
end

Update Unassigned Tracks

Mark each unassigned track as invisible, and increase its age by 1.

function updateUnassignedTracks()
for i = 1:length(unassignedTracks)

ind = unassignedTracks(i);
tracks(ind).age = tracks(ind).age + 1;
tracks(ind).consecutiveInvisibleCount = ...

tracks(ind).consecutiveInvisibleCount + 1;
end

end

Delete Lost Tracks

The deleteLostTracks function deletes tracks that have been invisible for
too many consecutive frames. It also deletes recently created tracks that have
been invisible for too many frames overall.

function deleteLostTracks()
if isempty(tracks)

return;
end

invisibleForTooLong = 10;
ageThreshold = 8;

% Compute the fraction of the track's age for which it was visible.
ages = [tracks(:).age];
totalVisibleCounts = [tracks(:).totalVisibleCount];
visibility = totalVisibleCounts ./ ages;

% Find the indices of 'lost' tracks.
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lostInds = (ages < ageThreshold & visibility < 0.6) | ...
[tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong;

% Delete lost tracks.
tracks = tracks(~lostInds);

end

Create New Tracks

Create new tracks from unassigned detections. Assume that any unassigned
detection is a start of a new track. In practice, you can use other cues to
eliminate noisy detections, such as size, location, or appearance.

function createNewTracks()
centroids = centroids(unassignedDetections, :);
bboxes = bboxes(unassignedDetections, :);

for i = 1:size(centroids, 1)

centroid = centroids(i,:);
bbox = bboxes(i, :);

% Create a Kalman filter object.
kalmanFilter = configureKalmanFilter('ConstantVelocity', ...

centroid, [200, 50], [100, 25], 100);

% Create a new track.
newTrack = struct(...

'id', nextId, ...
'bbox', bbox, ...
'kalmanFilter', kalmanFilter, ...
'age', 1, ...
'totalVisibleCount', 1, ...
'consecutiveInvisibleCount', 0);

% Add it to the array of tracks.
tracks(end + 1) = newTrack;

% Increment the next id.
nextId = nextId + 1;
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end
end

Display Tracking Results

The displayTrackingResults function draws a bounding box and label ID
for each track on the video frame and the foreground mask. It then displays
the frame and the mask in their respective video players.

function displayTrackingResults()
% Convert the frame and the mask to uint8 RGB.
frame = im2uint8(frame);
mask = uint8(repmat(mask, [1, 1, 3])) .* 255;

minVisibleCount = 8;
if ~isempty(tracks)

% Noisy detections tend to result in short-lived tracks.
% Only display tracks that have been visible for more than
% a minimum number of frames.
reliableTrackInds = ...

[tracks(:).totalVisibleCount] > minVisibleCount;
reliableTracks = tracks(reliableTrackInds);

% Display the objects. If an object has not been detected
% in this frame, display its predicted bounding box.
if ~isempty(reliableTracks)

% Get bounding boxes.
bboxes = cat(1, reliableTracks.bbox);

% Get ids.
ids = int32([reliableTracks(:).id]);

% Create labels for objects indicating the ones for
% which we display the predicted rather than the actual
% location.
labels = cellstr(int2str(ids'));
predictedTrackInds = ...

[reliableTracks(:).consecutiveInvisibleCount] > 0;
isPredicted = cell(size(labels));
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isPredicted(predictedTrackInds) = {' predicted'};
labels = strcat(labels, isPredicted);

% Draw the objects on the frame.
frame = insertObjectAnnotation(frame, 'rectangle', ...

bboxes, labels);

% Draw the objects on the mask.
mask = insertObjectAnnotation(mask, 'rectangle', ...

bboxes, labels);
end

end

% Display the mask and the frame.
obj.maskPlayer.step(mask);
obj.videoPlayer.step(frame);

end

Summary

This example created a motion-based system for detecting and tracking
multiple moving objects. Try using a different video to see if you are able to
detect and track objects. Try modifying the parameters for the detection,
assignment, and deletion steps.

The tracking in this example was solely based on motion with the assumption
that all objects move in a straight line with constant speed. When the motion
of an object significantly deviates from this model, the example may produce
tracking errors. Notice the mistake in tracking the person labeled #12, when
he is occluded by the tree.

The likelihood of tracking errors can be reduced by using a more complex
motion model, such as constant acceleration, or by using multiple Kalman
filters for every object. Also, you can incorporate other cues for associating
detections over time, such as size, shape, and color.

end
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Train a Cascade Object Detector

In this section...

“Why Train a Detector?” on page 4-29

“What Kind of Objects Can Be Detected?” on page 4-30

“How does the Cascade Classifier work?” on page 4-30

“How to Use The trainCascadeObjectDetector Function to Create a
Cascade Classifier” on page 4-31

“Troubleshooting” on page 4-36

“Examples” on page 4-38

Why Train a Detector?
The vision.CascadeObjectDetector System object comes with several
pretrained classifiers for detecting frontal faces, profile faces, noses,
upperbody, and eyes. However, these classifiers may not be sufficient for
a particular application. Computer Vision System Toolbox provides the
trainCascadeObjectDetector function to train a custom classifier.
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What Kind of Objects Can Be Detected?
The Computer Vision System Toolbox cascade object detector can detect
object categories whose aspect ratio does not vary significantly. Objects
whose aspect ratio remains approximately fixed include faces, stop signs, or
cars viewed from one side.

The vision.CascadeObjectDetector System object detects objects in images
by sliding a window over the image. The detector then uses a cascade
classifier to decide whether the window contains the object of interest. The
size of the window varies to detect objects at different scales, but its aspect
ratio remains fixed. The detector is very sensitive to out-of-plane rotation,
because the aspect ratio changes for most 3-D objects. Thus, you need to train
a detector for each orientation of the object. Training a single detector to
handle all orientations will not work.

How does the Cascade Classifier work?
The cascade classifier consists of stages, where each stage is an ensemble
of weak learners. The weak learners are simple classifiers called decision
stumps. Each stage is trained using a technique called boosting. Boosting
provides the ability to train a highly accurate classifier by taking a weighted
average of the decisions made by the weak learners.

Each stage of the classifier labels the region defined by the current location
of the sliding window as either positive or negative. Positive indicates an
object was found and negative indicates no object. If the label is negative, the
classification of this region is complete, and the detector slides the window to
the next location. If the label is positive, the classifier passes the region to
the next stage. The detector reports an object found at the current window
location when the final stage classifies the region as positive.

The stages are designed to reject negative samples as fast as possible. The
assumption is that the vast majority of windows do not contain the object of
interest. Conversely, true positives are rare, and worth taking the time to
verify. A true positive occurs when a positive sample is correctly classified.
A false positive occurs when a negative sample is mistakenly classified as
positive. A false negative occurs when a positive sample is mistakenly
classified as negative. To work well, each stage in the cascade must have a
low false negative rate. If a stage incorrectly labels an object as negative, the
classification stops, and there is no way to correct the mistake. However,
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each stage may have a high false positive rate. Even if it incorrectly labels a
nonobject as positive, the mistake can be corrected by subsequent stages.

The overall false positive rate of the cascade classifier is fs, where f is the
false positive rate per stage in the range (0 1), and s is the number of stages.
Similarly, the overall true positive rate is ts, where t is the true positive rate
per stage in the range (0 1]. Thus, you can see that adding more stages reduces
the overall false-postive rate, but it also reduces the overall true positive rate.

How to Use The trainCascadeObjectDetector Function
to Create a Cascade Classifier
Cascade classifier training requires a set of positive samples and a set of
negative images. You must provide a set of positive images with regions of
interest specified to be used as positive samples. You also must provide a
set of negative images from which the function generates negative samples
automatically. Set the number of stages, feature type, and other function
parameters to achieve acceptable detector accuracy.

4-31



4 Motion Estimation and Tracking

4-32



Train a Cascade Object Detector

Tips and Trade-offs to Consider When Setting Parameters
You want to select the function parameters to optimize the number of stages,
false positive rate, true positive rate, and the type of features to use for
training. When you set the parameters, consider the tradeoffs described in
the following table.

If you... Then...

Have a large training set, (in the
thousands).

You can increase the number of
stages and set a higher false positive
rate for each stage.

Have a small training set. You may need to decrease the
number of stages and set a lower
false positive rate for each stage.

Want to reduce the probability of
missing an object.

You should increase the true positive
rate. However, a high true positive
rate may prevent you from being
able to achieve the desired false
positive rate per stage. This means
that the detector will be more likely
to produce false detections.

Want to reduce the number of false
detections.

You should increase the number of
stages or decrease the false alarm
rate per stage.

Feature Types Available for Training
Choose the feature which suits the type of object detection you need. The
trainCascadeObjectDetector supports three types of features: Haar, Local
Binary Patterns (LBP), and Histograms of Oriented Gradients (HOG).
Historically, Haar and LBP features have been used for detecting faces.
They work well for representing fine-scale textures. The HOG features have
been used for detecting objects such as people and cars. They are useful
for capturing the overall shape of an object. For example, in the following
visualization of the HOG features, you can see the outline of the bicycle.
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You may need to run the trainCascadeObjectDetector function multiple
times to tune the parameters. To save time, you can try using LBP or HOG
features on a small subset of your data because training a detector using
Haar features takes much longer. After that, you can try the Haar features to
see if the accuracy can be improved.

Supply Positive Samples
You can specify positive samples in two ways. One way is to specify
rectangular regions in a larger image. The regions contain the objects of
interest. The other approach is to crop out the object of interest from the
image and save it as a separate image. Then, you can specify the region to be
the entire image. You can also generate more positive samples from existing
ones by adding rotation or noise, or by varying brightness or contrast.

Supply Negative Images
Negative samples are not specified explicitly. Instead, the
trainCascadeObjectDetector function automatically generates negative
samples from user-supplied negative images that do not contain objects of
interest. Before training each new stage, the function runs the detector
consisting of the stages already trained on the negative images. If any objects
are detected from these, they must be false positives. These false positives
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are used as negative samples. In this way, each new stage of the cascade is
trained to correct mistakes made by previous stages.

As more stages are added, the detector’s overall false positive rate decreases,
causing generation of negative samples to be more difficult. For this reason,
it is helpful to supply as many negative images as possible. To improve
training accuracy, supply negative images that contain backgrounds typically
associated with the objects of interest. Also, include negative images that
contain nonobjects similar in appearance to the objects of interest. For
example, if you are training a stop-sign detector, the negative images should
contain other road signs and shapes.

Choose The Number of Stages
There is a trade-off between fewer stages with a lower false positive rate
per stage or more stages with a higher false positive rate per stage. Stages
with a lower false positive rate are more complex because they contain a
greater number of weak learners. Stages with a higher false positive rate
contain fewer weak learners. Generally, it is better to have a greater number
of simple stages because at each stage the overall false positive rate decreases
exponentially. For example, if the false positive rate at each stage is 50%,
then the overall false positive rate of a cascade classifier with two stages is
25%. With three stages, it becomes 12.5%, and so on. However, the greater
the number of stages, the greater the amount of training data the classifier
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requires. Also, increasing the number of stages increases the false negative
rate. This results in a greater chance of rejecting a positive sample by
mistake. You should set the false positive rate (FalseAlarmRate) and the
number of stages, (NumCascadeStages) to yield an acceptable overall false
positive rate. Then, you can tune these two parameters experimentally.

There are cases when the training may terminate early. For example,
training may stop after seven stages, even though you set the number of
stages parameter to 20. This can happen when the function cannot generate
enough negative samples. Note, that if you run the function again and set the
number of stages to seven, you will not get the same result. This is because
the number of positive and negative samples to use for each stage will be
recalculated for the new number of stages.

Troubleshooting

What to do if you run out of positive samples?
The trainCascadeObjectDetector function automatically determines the
number of positive samples to use to train each stage. The number is based on
the total number of positive samples supplied by the user and the values of
the TruePositiveRate and NumCascadeStages parameters.

The number of available positive samples used to train each stage depends
on the true positive rate. The rate specifies what percentage of positive
samples the function may classify as negative. If a sample is classified as a
negative by any stage, it never reaches subsequent stages. For example,
suppose you set the TruePositiveRate to 0.9, and all of the available
samples are used to train the first stage. In this case, 10% of the positive
samples may be rejected as negatives, and only 90% of the total positive
samples are available for training the second stage. If training continues,
then each stage is trained with fewer and fewer samples. Each subsequent
stage must solve an increasingly more difficult classification problem with
fewer positive samples. With each stage getting fewer samples, the later
stages are likely to over-fit the data.

Ideally, you want to use the same number of samples to train each stage. To
do so, the number of positive samples used to train each stage must be less
than the total number of available positive samples. The only exception is
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that — when the value of TruePositiveRate times the total number of
positive samples is less than 1, no positive samples are rejected as negatives.

The function calculates the number of positive samples to use at each stage
using the following formula:

number of positive samples = floor(totalPositiveSamples / (1 +
(NumCascadeStages - 1) * (1 - TruePositiveRate)))

Unfortunately, this calculation does not guarantee that there is going to be
the same number of positive samples available for each stage. The reason is
that it is impossible to predict with certainty how many positive samples
are going to be rejected as negatives. The training continues as long as the
number of positive samples available to train a stage is greater than 10%
of the number of samples the function determined automatically using the
preceding formula. If there are not enough positive samples the training
stops and the function issues a warning. It will output a classifier consisting
of the stages it has been able to train up to this point. If the training
stops, you can add more positive samples. Alternatively, you can increase
TruePositiveRate. Reducing the number of stages would also work, but
such reduction can also result in a higher overall false alarm rate.

What to do if you run out of negative samples?
The function calculates the number of negative samples used at each stage.
This calculation is done by multiplying the number of positive samples used
at each stage by the value of NegativeSamplesFactor.

Just as with positive samples, there is no guarantee that the calculated
number of negative samples are always available for a particular stage. The
trainCascadeObjectDetector function generates negative samples from the
negative images. However, with each new stage, the overall false alarm rate
of the cascade classifier decreases, making it less likely to find the negative
samples.

The training continues as long as the number of negative samples available
to train a stage is greater than 10% of the calculated number of negative
samples. If there are not enough negative samples the training stops and the
function issues a warning. It outputs a classifier consisting of the stages it
has been able to train up to this point. When the training stops, the best
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approach is to add more negative images. Alternatively, you can try to reduce
the number of stages, or increase the false positive rate.

Examples

Train a Five-Stage Stop-Sign Detector
This example shows how to set up and train a five-stage, stop-sign detector,
using 86 positive samples. The default value for TruePositiveRate is
0.995.

Step 1: Load the positive samples data from a MAT file. File names and
bounding boxes are contained in the array of structures labeled 'data'.

load('stopSigns.mat');

Step 2: Add the image directory to the MATLAB path.

imDir = fullfile(matlabroot,'toolbox','vision','visiondemos','stopSignImage
addpath(imDir);

Step 3: Specify folder with negative images.

negativeFolder = fullfile(matlabroot,'toolbox','vision','visiondemos','non_

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector.xml',data,negativeFolder,'Fals

Computer Vision software returns the following message:
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Notice that all 86 positive samples were used to train each stage. This is
because the true-positive rate is very high relative to the number of positive
samples.

Train a Five-Stage Stop-Sign Detector with a Decreased True-Positive
Rate

This example shows you how to train a stop-sign detector on the same data set
as the first example, (steps 1–4), but decreased TruePositiveRate to 0.98.

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector_tpr0_98.xml',data,negativeFold

4-39



4 Motion Estimation and Tracking

Notice that only 79 of the total 86 positive samples were used to train each
stage. This is because the true-positive rate was low enough for the function
to start rejecting some of the positive samples as false-negatives.

Train a Ten-stage Stop-Sign Detector

This example shows you how to train a stop-sign detector on the same data
set as the first example, (steps 1–4), but increased the number of stages to 10.

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector_10stages.xml',data,negativeFol
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In this case, NegativeSamplesFactor was set to 2, therefore the number of
negative samples used to train each stage was 172. Notice that the function
was only able to generate 33 negative samples for stage 6, and it was not
able to train stage 7 at all. This condition occurs because the number of
negatives in stage 7 was less than 17, (roughly half of the previous number of
negative samples). The function produced a stop-sign detector with 6 stages,
instead of the 10 previously specified. The resulting overall false alarm rate is
0.27=1.28e-05, while the expected false alarm rate was 1.024e-07.

At this point, you could add more negative images, reduce the number of
stages, or increase the false-positive rate. For example, you can increase
the false-positive rate, FalseAlarmRate to 0.5. The expected overall
false-positive rate in this case would be 0.0039.

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector_10stages_far0_5.xml',data,nega
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Notice that now the function was able to train 8 stages before it stopped
because the threshold reached the overall false alarm rate of 0.000587108.

External
Web Sites

• Cascade Training GUI
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Detecting Cars Using Gaussian Mixture Models
This example shows how to detect and count cars in a video sequence using
foreground detector based on Gaussian mixture models (GMMs).

Introduction

Detecting and counting cars can be used to analyze traffic patterns. Detection
is also a first step prior to performing more sophisticated tasks such as
tracking or categorization of vehicles by their type.

This example shows how to use the foreground detector and blob analysis
to detect and count cars in a video sequence. It assumes that the camera
is stationary. The example focuses on detecting objects. To learn more
about tracking objects, see the example titled Motion-Based Multiple Object
Tracking.

Step 1 - Import Video and Initialize Foreground Detector

Rather than immediately processing the entire video, the example starts by
obtaining an initial video frame in which the moving objects are segmented
from the background. This helps to gradually introduce the steps used to
process the video.

The foreground detector requires a certain number of video frames in order to
initialize the Gaussian mixture model. This example uses the first 50 frames
to initialize three Gaussian modes in the mixture model.

foregroundDetector = vision.ForegroundDetector('NumGaussians', 3, ...
'NumTrainingFrames', 50);

videoReader = vision.VideoFileReader('visiontraffic.avi');
for i = 1:150

frame = step(videoReader); % read the next video frame
foreground = step(foregroundDetector, frame);

end

After the training, the detector begins to output more reliable segmentation
results. The two figures below show one of the video frames and the
foreground mask computed by the detector.
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figure; imshow(frame); title('Video Frame');

figure; imshow(foreground); title('Foreground');

4-46



Detecting Cars Using Gaussian Mixture Models

Step 2 - Detect Cars in an Initial Video Frame

The foreground segmentation process is not perfect and often includes
undesirable noise. The example uses morphological opening to remove the
noise and to fill gaps in the detected objects.

se = strel('square', 3);
filteredForeground = imopen(foreground, se);
figure; imshow(filteredForeground); title('Clean Foreground');
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Next, we find bounding boxes of each connected component corresponding to a
moving car by using vision.BlobAnalysis object. The object further filters the
detected foreground by rejecting blobs which contain fewer than 150 pixels.

blobAnalysis = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
'AreaOutputPort', false, 'CentroidOutputPort', false, ...
'MinimumBlobArea', 150);

bbox = step(blobAnalysis, filteredForeground);

To highlight the detected cars, we draw green boxes around them.

result = insertShape(frame, 'Rectangle', bbox, 'Color', 'green');

The number of bounding boxes corresponds to the number of cars found in the
video frame. We display the number of found cars in the upper left corner of
the processed video frame.

numCars = size(bbox, 1);
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result = insertText(result, [10 10], numCars, 'BoxOpacity', 1, ...
'FontSize', 14);

figure; imshow(result); title('Detected Cars');

Step 3 - Process the Rest of Video Frames

In the final step, we process the remaining video frames.

videoPlayer = vision.VideoPlayer('Name', 'Detected Cars');
videoPlayer.Position(3:4) = [650,400]; % window size: [width, height]
se = strel('square', 3); % morphological filter for noise removal

while ~isDone(videoReader)

frame = step(videoReader); % read the next video frame

% Detect the foreground in the current video frame
foreground = step(foregroundDetector, frame);
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% Use morphological opening to remove noise in the foreground
filteredForeground = imopen(foreground, se);

% Detect the connected components with the specified minimum area, and
% compute their bounding boxes
bbox = step(blobAnalysis, filteredForeground);

% Draw bounding boxes around the detected cars
result = insertShape(frame, 'Rectangle', bbox, 'Color', 'green');

% Display the number of cars found in the video frame
numCars = size(bbox, 1);
result = insertText(result, [10 10], numCars, 'BoxOpacity', 1, ...

'FontSize', 14);

step(videoPlayer, result); % display the results
end

release(videoReader); % close the video file
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The output video displays the bounding boxes around the cars. It also displays
the number of cars in the upper left corner of the video.
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Video Mosaicking
This example shows how to create a mosaic from a video sequence. Video
mosaicking is the process of stitching video frames together to form a
comprehensive view of the scene. The resulting mosaic image is a compact
representation of the video data, which is often used in video compression
and surveillance applications.

Introduction

This example illustrates how to use detectFASTFeatures, extractFeatures,
matchFeatures, and estimateGeometricTransform to create a mosaic
image from a video sequence. First, the example identifies the corners in
the first (reference) and second video frames. Then, it calculates the affine
transformation matrix that best describes the transformation between corner
positions in these frames. Finally, the example overlays the second image
onto the first image. The example repeats this process to create a mosaic
image of the video scene.

Initialization

Define the size and location of the output mosaic image.

[w, h] = deal(680, 400); % Size of the mosaic
[x0, y0] = deal(-5, -60); % Upper-left corner of the mosaic
xLim = [0.5, w+0.5] + x0;
yLim = [0.5, h+0.5] + y0;
outputView = imref2d([h,w], xLim, yLim);

Create a VideoFileReader System object to read video from a file.

hsrc = vision.VideoFileReader('vipmosaicking.avi', 'ImageColorSpace', ...
'RGB', 'PlayCount', 1);

Create a AlphaBlender System object to overlay the consecutive video frames
to produce the mosaic.

halphablender = vision.AlphaBlender( ...
'Operation', 'Binary mask', 'MaskSource', 'Input port');
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Create two VideoPlayer System objects, one to display the corners of each
frame and other to draw the mosaic.

hVideo1 = vision.VideoPlayer('Name', 'Corners');
hVideo1.Position(1) = hVideo1.Position(1) - 350;

hVideo2 = vision.VideoPlayer('Name', 'Mosaic');
hVideo2.Position(1) = hVideo1.Position(1) + 400;
hVideo2.Position([3 4]) = [750 500];

Initialize some variables which will be used later.

points = cornerPoints(zeros(0, 2));
features = binaryFeatures(zeros([0 64], 'uint8'));
failedToMatchPoints = true; % A new mosaic will be created if

% failedToMatchPoints is true

Stream Processing Loop

Create a processing loop to create mosaic from the input video. This loop uses
the System objects you instantiated above.

while ~isDone(hsrc)
% Save the points and features computed from the previous image
pointsPrev = points;
featuresPrev = features;

% To speed up mosaicking, select and process every 5th image
for i = 1:5

rgb = step(hsrc);
if isDone(hsrc)

break;
end

end

% Convert the image from RGB to intensity.
I = rgb2gray(rgb);

% Detect corners in the image
corners = detectFASTFeatures(I);
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% Extract FREAK feature vectors for the corners
[features, points] = extractFeatures(I, corners);

% Match features computed from the current and the previous images
indexPairs = matchFeatures(features, featuresPrev);

% Check if there are enough corresponding points in the current and the
% previous images
if size(indexPairs, 1) > 2

matchedPoints = points(indexPairs(:, 1), :);
matchedPointsPrev = pointsPrev(indexPairs(:, 2), :);

% Find corresponding locations in the current and the previous
% images, and compute a geometric transformation from the
% corresponding locations
[tform, ~, ~, failedToMatchPoints] = estimateGeometricTransform(...

matchedPoints, matchedPointsPrev, 'affine');
end

if failedToMatchPoints
% If the current image does not match the previous one, reset the
% transformation and the mosaic image
xtform = eye(3);
mosaic = zeros(h, w, 3, 'single');

else
% If the current image matches with the previous one, compute the
% transformation for mapping the current image onto the mosaic
% image
xtform = xtform * tform.T;

end

% Display the current image and the corner points
cornerImage = insertMarker(rgb, corners.Location, 'Color', 'red');
step(hVideo1, cornerImage);

% Creat a mask which specifies the region of the transformed image.
mask = imwarp(ones(size(I)), affine2d(xtform), 'OutputView', outputView

% Warp the current image onto the mosaic image
transformedImage = imwarp(rgb, affine2d(xtform), 'OutputView', outputVi
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mosaic = step(halphablender, mosaic, transformedImage, mask);
step(hVideo2, mosaic);

end

release(hsrc);
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The Corners window displays the input video along with the detected corners
and Mosaic window displays the mosaic created from the input video.
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Video Mosaicking
This example shows how to create a mosaic from a video sequence. Video
mosaicking is the process of stitching video frames together to form a
comprehensive view of the scene. The resulting mosaic image is a compact
representation of the video data. The Video Mosaicking block is often used in
video compression and surveillance applications.

This example illustrates how to use the Corner Detection block, the Estimate
Geometric Transformation block, the Projective Transform block, and the
Compositing block to create a mosaic image from a video sequence.

Example Model

The following figure shows the Video Mosaicking model:

The Input subsystem loads a video sequence from either a file, or generates
a synthetic video sequence. The choice is user defined. First, the Corner
Detection block finds points that are matched between successive frames
by the Corner Matching subsystem. Then the Estimate Geometric
Transformation block computes an accurate estimate of the transformation
matrix. This block uses the RANSAC algorithm to eliminate outlier input
points, reducing error along the seams of the output mosaic image. Finally,
the Mosaicking subsystem overlays the current video frame onto the output
image to generate a mosaic.
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Input Subsystem

The Input subsystem can be configured to load a video sequence from a file, or
to generate a synthetic video sequence.

If you choose to use a video sequence from a file, you can reduce computation
time by processing only some of the video frames. This is done by setting the
downsampling rate in the Frame Rate Downsampling subsystem.

If you choose a synthetic video sequence, you can set the speed of translation
and rotation, output image size and origin, and the level of noise. The output
of the synthetic video sequence generator mimics the images captured by a
perspective camera with arbitrary motion over a planar surface.

Corner Matching Subsystem

The subsystem finds corner features in the current video frame in one of three
methods. The example uses Local intensity comparison (Rosen & Drummond),
which is the fastest method. The other methods available are the Harris
corner detection (Harris & Stephens) and the Minimum Eigenvalue (Shi &
Tomasi).
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The Corner Matching Subsystem finds the number of corners, location, and
their metric values. The subsystem then calculates the distances between all
features in the current frame with those in the previous frame. By searching
for the minimum distances, the subsystem finds the best matching features.

Mosaicking Subsystem

By accumulating transformation matrices between consecutive video frames,
the subsystem calculates the transformation matrix between the current and
the first video frame. The subsystem then overlays the current video frame
on to the output image. By repeating this process, the subsystem generates
a mosaic image.
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The subsystem is reset when the video sequence rewinds or when the
Estimate Geometric Transformation block does not find enough inliers.

Video Mosaicking Using Synthetic Video

The Corners window shows the corner locations in the current video frame.

4-60



Video Mosaicking

The Mosaic window shows the resulting mosaic image.
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Video Mosaicking Using Captured Video

The Corners window shows the corner locations in the current video frame.
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The Mosaic window shows the resulting mosaic image.

4-63



4 Motion Estimation and Tracking

4-64



Track an Object Using Correlation

Track an Object Using Correlation
You can open the example model by typing

ex_vision_track_object

on the MATLAB command line.

In this example, you use the 2-D Correlation, 2-D Maximum, and Draw
Shapes blocks to find and indicate the location of a sculpture in each video
frame:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Read Binary File Computer Vision System
Toolbox > Sources

1

Image Data Type
Conversion

Computer Vision System
Toolbox > Conversions

1

Image From File Computer Vision System
Toolbox > Sources

1

2-D Correlation Computer Vision System
Toolbox > Statistics

1

2-D Maximum Computer Vision System
Toolbox > Statistics

1

Draw Shapes Computer Vision System
Toolbox > Text & Graphics

1

Video Viewer Computer Vision System
Toolbox > Sinks

1

Data Type Conversion Simulink > Signal Attributes 1

Constant Simulink > Sources 1

Mux Simulink > Signal Routing 1
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2 Use the Read Binary File block to import a binary file into the model. Set
the block parameters as follows:

• File name = cat_video.bin

• Four character code = GREY

• Number of times to play file = inf

• Sample time = 1/30

3 Use the Image Data Type Conversion block to convert the data type of the
video to single-precision floating point. Accept the default parameter.

4 Use the Image From File block to import the image of the cat sculpture,
which is the object you want to track. Set the block parameters as follows:

• Main pane, File name = cat_target.png

• Data Types pane, Output data type = single

5 Use the 2-D Correlation block to determine the portion of each video frame
that best matches the image of the cat sculpture. Set the block parameters
as follows:

• Output size = Valid

• Select the Normalized output check box.

Because you chose Valid for the Output size parameter, the block
outputs only those parts of the correlation that are computed without the
zero-padded edges of any input.

6 Use the 2-D Maximum block to find the index of the maximum value in
each input matrix. Set the Mode parameter to Index. This block outputs
the zero-based location of the maximum value as a two-element vector of
32-bit unsigned integers at the Idx port.

7 Use the Data Type Conversion block to change the index values from 32-bit
unsigned integers to single-precision floating-point values. Set the Output
data type parameter to single.

8 Use the Constant block to define the size of the image of the cat sculpture.
Set the Constant value parameter to single([41 41]).
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9 Use the Mux block to concatenate the location of the maximum value and
the size of the image of the cat sculpture into a single vector. You use this
vector to define a rectangular region of interest (ROI) that you pass to the
Draw Shapes block.

10 Use the Draw Shapes block to draw a rectangle around the portion of each
video frame that best matches the image of the cat sculpture. Accept the
default parameters.

11 Use the Video Viewer block to display the video stream with the ROI
displayed on it. Accept the default parameters. This block automatically
displays the video in the Video Viewer window when you run the model.
Because the image is represented by single-precision floating-point values,
a value of 0 corresponds to black and a value of 1 corresponds to white.

12 Connect the blocks as shown in the following figure.
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13 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

14 Run the simulation.
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The video is displayed in the Video Viewer window and a rectangular
box appears around the cat sculpture. To view the video at its true size,
right-click the window and select Set Display To True Size.

As the video plays, you can watch the rectangular ROI follow the sculpture
as it moves.

In this example, you used the 2-D Correlation, 2-D Maximum, and Draw
Shapes blocks to track the motion of an object in a video stream. For more
information about these blocks, see the 2-D Correlation, 2-D Maximum, and
Draw Shapes block reference pages.
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Note This example model does not provide an indication of whether or not
the sculpture is present in each video frame. For an example of this type of
model, type vippattern at the MATLAB command prompt.
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Panorama Creation
This example shows how to create a panorama from a video sequence. The
model calculates the motion vector between two adjacent video frames and
uses it to find the portion of each frame that best matches the previous frame.
Then it selects the matching portion and concatenates it with the previous
frame. By repeating this process, it builds a panoramic image out of the
video sequence.

Example Model

The following figure shows the Panorama Creation model:

Motion Estimation Subsystem

This model computes the Sum of Absolute Differences (SAD) using Template
Matching block to estimate the motion between consecutive video frames.
Then it computes the motion vector of a particular block in the current frame
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with respect to the previous frame. The model uses this motion vector to align
consecutive frames of the video to form a panoramic picture.

Panorama Creation Results

The model takes the video sequence in the Input window and creates a
panorama, which it displays in the Panorama window. Note that this method
of panoramic picture creation assumes there is no zooming or rotational
variation in the video.
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Available Example Versions

Windows only: vippanorama_win.mdl

Platform independent: vippanorama_all.mdl
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Windows-only example models might contain compressed multimedia files
or To Video Display blocks, both of which are only supported on Windows
platforms. The To Video Display block supports code generation, and its
performance is optimized for Windows.
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Rotate an Image
You can use the Rotate block to rotate your image or video stream by a
specified angle. In this example, you learn how to use the Rotate block to
continuously rotate an image.

Note Running this example requires a DSP System Toolbox license.

ex_vision_rotate_image

1 Define an RGB image in the MATLAB workspace. At the MATLAB
command prompt, type

I = checker_board;

I is a 100-by-100-by-3 array of double-precision values. Each plane of the
array represents the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command
prompt, type

imshow(I)
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3 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Computer Vision System Toolbox
> Sources

1

Rotate Computer Vision System Toolbox
> Geometric Transformations

1

Video Viewer Computer Vision System Toolbox
> Sinks

2

Gain Simulink > Math Operations 1

Display DSP System Toolbox > Sinks 1

Counter DSP System Toolbox > Signal
Management > Switches and
Counters

1

4 Use the Image From Workspace block to import the RGB image from the
MATLAB workspace. On the Main pane, set the Value parameter to I.
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Each plane of the array represents the red, green, or blue color values
of the image.

5 Use the Video Viewer block to display the original image. Accept the
default parameters.

The Video Viewer block automatically displays the original image in
the Video Viewer window when you run the model. Because the image
is represented by double-precision floating-point values, a value of 0
corresponds to black and a value of 1 corresponds to white.

6 Use the Rotate block to rotate the image. Set the block parameters as
follows:

• Rotation angle source = Input port

• Sine value computation method = Trigonometric function

The Angle port appears on the block. You use this port to input a steadily
increasing angle. Setting the Output size parameter to Expanded to fit
rotated input image ensures that the block does not crop the output.

7 Use the Video Viewer1 block to display the rotating image. Accept the
default parameters.

8 Use the Counter block to create a steadily increasing angle. Set the block
parameters as follows:

• Count event = Free running

• Counter size = 16 bits

• Output = Count

• Clear the Reset input check box.

• Sample time = 1/30

The Counter block counts upward until it reaches the maximum value
that can be represented by 16 bits. Then, it starts again at zero. You can
view its output value on the Display block while the simulation is running.
The Counter block’s Count data type parameter enables you to specify
it’s output data type.
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9 Use the Gain block to convert the output of the Counter block from degrees
to radians. Set the Gain parameter to pi/180.

10 Connect the blocks as shown in the following figure.

11 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:
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• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

12 Run the model.

The original image appears in the Video Viewer window.

The rotating image appears in the Video Viewer1 window.
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In this example, you used the Rotate block to continuously rotate your image.
For more information about this block, see the Rotate block reference page
in the Computer Vision System Toolbox Reference. For more information
about other geometric transformation blocks, see the Resize and Shear block
reference pages.

Note If you are on a Windows operating system, you can replace the Video
Viewer block with the To Video Display block, which supports code generation.
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Resize an Image
You can use the Resize block to change the size of your image or video stream.
In this example, you learn how to use the Resize block to reduce the size
of an image:

ex_vision_resize_image

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox
> Sources

1

Resize Computer Vision System Toolbox
> Geometric Transformations

1

Video Viewer Computer Vision System Toolbox
> Sinks

2

2 Use the Image From File block to import the intensity image. Set the File
name parameter to moon.tif. The tif file is a 537-by-358 matrix of 8-bit
unsigned integer values.

3 Use the Video Viewer block to display the original image. Accept the
default parameters. This block automatically displays the original image in
the Video Viewer window when you run the model.

4 Use the Resize block to shrink the image. Set the Resize factor in %
parameter to 50. This shrinks the image to half its original size.

5 Use the Video Viewer1 block to display the modified image. Accept the
default parameters.

6 Connect the blocks as shown in the following figure.
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7 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)
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8 Run the model.

The original image appears in the Video Viewer window.

The reduced image appears in the Video Viewer1 window.
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In this example, you used the Resize block to shrink an image. For more
information about this block, see the Resize block reference page. For more
information about other geometric transformation blocks, see the Rotate,
Apply Geometric Transformation, Estimate Geometric Transformation, and
Translate block reference pages.

5-11



5 Geometric Transformations

Crop an Image
You can use the Selector block to crop your image or video stream. In this
example, you learn how to use the Selector block to trim an image down to a
particular region of interest:

ex_vision_crop_image

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox
> Sources

1

Video Viewer Computer Vision System Toolbox
> Sinks

2

Selector Simulink > Signal Routing 1

2 Use the Image From File block to import the intensity image. Set the File
name parameter to coins.png. The image is a 246-by-300 matrix of 8-bit
unsigned integer values.

3 Use the Video Viewer block to display the original image. Accept the
default parameters. This block automatically displays the original image in
the Video Viewer window when you run the model.

4 Use the Selector block to crop the image. Set the block parameters as
follows:

• Number of input dimensions = 2

• 1

– Index Option = Starting index (dialog)

– Index = 140

– Output Size = 70

• 2

– Index Option = Starting index (dialog)
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– Index = 200

– Output Size = 70

The Selector block starts at row 140 and column 200 of the image and
outputs the next 70 rows and columns of the image.

5 Use the Video Viewer1 block to display the cropped image. This block
automatically displays the modified image in the Video Viewer window
when you run the model.

6 Connect the blocks as shown in the following figure.
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7 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)
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8 Run the model.

The original image appears in the Video Viewer window.

The cropped image appears in the Video Viewer1 window. The following
image is shown at its true size.
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In this example, you used the Selector block to crop an image. For more
information about the Selector block, see the Simulink documentation. For
information about the imcrop function, see the Image Processing Toolbox
documentation.
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Interpolation Methods

In this section...

“Nearest Neighbor Interpolation” on page 5-17

“Bilinear Interpolation” on page 5-18

“Bicubic Interpolation” on page 5-19

Nearest Neighbor Interpolation
For nearest neighbor interpolation, the block uses the value of nearby
translated pixel values for the output pixel values.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 1.7 pixels in
the positive horizontal direction using nearest neighbor interpolation. The
Translate block’s nearest neighbor interpolation algorithm is illustrated by
the following steps:

1 Zero pad the input matrix and translate it by 1.7 pixels to the right.
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5 Geometric Transformations

2 Create the output matrix by replacing each input pixel value with the
translated value nearest to it. The result is the following matrix:

0 0 1 2 3
0 0 4 5 6
0 0 7 8 9

Note You wanted to translate the image by 1.7 pixels, but this method
translated the image by 2 pixels. Nearest neighbor interpolation is
computationally efficient but not as accurate as bilinear or bicubic
interpolation.

Bilinear Interpolation
For bilinear interpolation, the block uses the weighted average of two
translated pixel values for each output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in
the positive horizontal direction using bilinear interpolation. The Translate
block’s bilinear interpolation algorithm is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.
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2 Create the output matrix by replacing each input pixel value with the
weighted average of the translated values on either side. The result is
the following matrix where the output matrix has one more column than
the input matrix:

0 5 1 5 2 5 1 5
2 4 5 5 5 3

3 5 7 5 8 5 4 5

. . . .
. .

. . . .

Bicubic Interpolation
For bicubic interpolation, the block uses the weighted average of four
translated pixel values for each output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in
the positive horizontal direction using bicubic interpolation. The Translate
block’s bicubic interpolation algorithm is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.
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2 Create the output matrix by replacing each input pixel value with the
weighted average of the two translated values on either side. The result is
the following matrix where the output matrix has one more column than
the input matrix:

0 375 1 5 3 1 625
1 875 4 875 6 375 3 125
3 375 8 25 9 75 4 625

. . .

. . . .

. . . .
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Video Stabilization
This example shows how to remove the effect of camera motion from a video
stream.

Introduction

In this example we first define the target to track. In this case, it is the back
of a car and the license plate. We also establish a dynamic search region,
whose position is determined by the last known target location. We then
search for the target only within this search region, which reduces the number
of computations required to find the target. In each subsequent video frame,
we determine how much the target has moved relative to the previous frame.
We use this information to remove unwanted translational camera motions
and generate a stabilized video.

Initialization

Create a System object to read video from a multimedia file. We set the
output to be of intensity only video.

% Input video file which needs to be stabilized.
filename = 'shaky_car.avi';

hVideoSource = vision.VideoFileReader(filename, ...
'ImageColorSpace', 'Intensity',...
'VideoOutputDataType', 'double');

Create a geometric translator System object used to compensate for the
camera movement.

hTranslate = vision.GeometricTranslator( ...
'OutputSize', 'Same as input image', ...
'OffsetSource', 'Input port');

Create a template matcher System object to compute the location of the best
match of the target in the video frame. We use this location to find translation
between successive video frames.

hTM = vision.TemplateMatcher('ROIInputPort', true, ...
'BestMatchNeighborhoodOutputPort', true);

5-21
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Create a System object to display the original video and the stabilized video.

hVideoOut = vision.VideoPlayer('Name', 'Video Stabilization');
hVideoOut.Position(1) = round(0.4*hVideoOut.Position(1));
hVideoOut.Position(2) = round(1.5*(hVideoOut.Position(2)));
hVideoOut.Position(3:4) = [650 350];

Here we initialize some variables used in the processing loop.

pos.template_orig = [109 100]; % [x y] upper left corner
pos.template_size = [22 18]; % [width height]
pos.search_border = [15 10]; % max horizontal and vertical displacement
pos.template_center = floor((pos.template_size-1)/2);
pos.template_center_pos = (pos.template_orig + pos.template_center - 1);
fileInfo = info(hVideoSource);
W = fileInfo.VideoSize(1); % Width in pixels
H = fileInfo.VideoSize(2); % Height in pixels
BorderCols = [1:pos.search_border(1)+4 W-pos.search_border(1)+4:W];
BorderRows = [1:pos.search_border(2)+4 H-pos.search_border(2)+4:H];
sz = fileInfo.VideoSize;
TargetRowIndices = ...

pos.template_orig(2)-1:pos.template_orig(2)+pos.template_size(2)-2;
TargetColIndices = ...

pos.template_orig(1)-1:pos.template_orig(1)+pos.template_size(1)-2;
SearchRegion = pos.template_orig - pos.search_border - 1;
Offset = [0 0];
Target = zeros(18,22);
firstTime = true;

Stream Processing Loop

This is the main processing loop which uses the objects we instantiated above
to stabilize the input video.

while ~isDone(hVideoSource)
input = step(hVideoSource);

% Find location of Target in the input video frame
if firstTime
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Idx = int32(pos.template_center_pos);
MotionVector = [0 0];
firstTime = false;

else
IdxPrev = Idx;

ROI = [SearchRegion, pos.template_size+2*pos.search_border];
Idx = step(hTM, input, Target, ROI);

MotionVector = double(Idx-IdxPrev);
end

[Offset, SearchRegion] = updatesearch(sz, MotionVector, ...
SearchRegion, Offset, pos);

% Translate video frame to offset the camera motion
Stabilized = step(hTranslate, input, fliplr(Offset));

Target = Stabilized(TargetRowIndices, TargetColIndices);

% Add black border for display
Stabilized(:, BorderCols) = 0;
Stabilized(BorderRows, :) = 0;

TargetRect = [pos.template_orig-Offset, pos.template_size];
SearchRegionRect = [SearchRegion, pos.template_size + 2*pos.search_bord

% Draw rectangles on input to show target and search region
input = insertShape(input, 'Rectangle', [TargetRect; SearchRegionRect],

'Color', 'white');
% Display the offset (displacement) values on the input image
txt = sprintf('(%+05.1f,%+05.1f)', Offset);
input = insertText(input(:,:,1),[191 215],txt,'FontSize',16, ...

'TextColor', 'white', 'BoxOpacity', 0);
% Display video
step(hVideoOut, [input(:,:,1) Stabilized]);

end
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Release

Here you call the release method on the objects to close any open files and
devices.

release(hVideoSource);

Conclusion

Using the Computer Vision System Toolbox™ functionality from MATLAB
command line it is easy to implement complex systems like video stabilization.

Appendix
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The following helper function is used in this example.

• updatesearch.m
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Video Stabilization
This example shows how to remove the effect of camera motion from a video
stream. In the first video frame, the model defines the target to track. In
this case, it is the back of a car and the license plate. It also establishes a
dynamic search region, whose position is determined by the last known target
location. The model only searches for the target within this search region,
which reduces the number of computations required to find the target. In
each subsequent video frame, the model determines how much the target has
moved relative to the previous frame. It uses this information to remove
unwanted translational camera motions and generate a stabilized video.

Example Model

The following figure shows the Video Stabilization model:

Estimate Motion Subsystem

The model uses the Template Matching block to move the target over the
search region and compute the Sum of Absolute Differences (SAD) at each
location. The location with the lowest SAD value corresponds to the location
of the target in the video frame. Based on the location information, the model
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computes the displacement vector between the target and its original location.
The Translate block in the Stabilization subsystem uses this vector to shift
each frame so that the camera motion is removed from the video stream.

Display Results Subsystem

The model uses the Resize, Compositing, and Insert Text blocks to embed the
enlarged target and its displacement vector on the original video.

Video Stabilization Results

The figure on the left shows the original video. The figure on the right shows
the stabilized video.
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Available Example Versions

Floating-point versions of this example:

Windows only: vipstabilize_win.mdl

Platform independent: vipstabilize_all.mdl

Fixed-point versions of this example:

Windows only: vipstabilize_fixpt_win.mdl

Platform independent: vipstabilize_fixpt_all.mdl

Fixed-point versions of this example that simulate row major data
organization:

Windows only: vipstabilize_fixpt_rowmajor_win.mdl

Platform independent: vipstabilize_fixpt_rowmajor_all.mdl

Windows-only example models might contain compressed multimedia files
or To Video Display blocks, both of which are only supported on Windows
platforms. The To Video Display block supports code generation, and its
performance is optimized for Windows.
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• “Adjust the Contrast of Intensity Images” on page 6-2

• “Adjust the Contrast of Color Images” on page 6-7
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6 Filters, Transforms, and Enhancements

Adjust the Contrast of Intensity Images
This example shows you how to modify the contrast in two intensity images
using the Contrast Adjustment and Histogram Equalization blocks.

ex_vision_adjust_contrast_intensity

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

2

Contrast
Adjustment

Computer Vision System Toolbox >
Analysis & Enhancement

1

Histogram
Equalization

Computer Vision System Toolbox >
Analysis & Enhancement

1

Video Viewer Computer Vision System Toolbox >
Sinks

4

2 Place the blocks listed in the table above into your new model.

3 Use the Image From File block to import the first image into the Simulink
model. Set the File name parameter to pout.tif.

4 Use the Image From File1 block to import the second image into the
Simulink model. Set the File name parameter to tire.tif.

5 Use the Contrast Adjustment block to modify the contrast in pout.tif.
Set the Adjust pixel values from parameter to Range determined by
saturating outlier pixels. This block adjusts the contrast of the image
by linearly scaling the pixel values between user-specified upper and lower
limits.

6 Use the Histogram Equalization block to modify the contrast in tire.tif.
Accept the default parameters. This block enhances the contrast of images
by transforming the values in an intensity image so that the histogram of
the output image approximately matches a specified histogram.
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7 Use the Video Viewer blocks to view the original and modified images.
Accept the default parameters.

8 Connect the blocks as shown in the following figure.
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9 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model.

The results appear in the Video Viewer windows.
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In this example, you used the Contrast Adjustment block to linearly scale the
pixel values in pout.tif between new upper and lower limits. You used the
Histogram Equalization block to transform the values in tire.tif so that the
histogram of the output image approximately matches a uniform histogram.
For more information, see the Contrast Adjustment and Histogram
Equalization reference pages.
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Adjust the Contrast of Color Images
This example shows you how to modify the contrast in color images using
the Histogram Equalization block.

ex_vision_adjust_contrast_color.mdl

1 Use the following code to read in an indexed RGB image, shadow.tif, and
convert it to an RGB image. The model provided above already includes
this code in file > Model Properties > Model Properties > InitFcn,
and executes it prior to simulation.

[X map] = imread('shadow.tif');
shadow = ind2rgb(X,map);

2 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Computer Vision System Toolbox >
Sources

1

Color Space
Conversion

Computer Vision System Toolbox >
Conversions

2

Histogram
Equalization

Computer Vision System Toolbox >
Analysis & Enhancement

1

Video Viewer Computer Vision System Toolbox >
Sinks

2

Constant Simulink > Sources 1

Divide Simulink > Math Operations 1

Product Simulink > Math Operations 1

3 Place the blocks listed in the table above into your new model.

4 Use the Image From Workspace block to import the RGB image from the
MATLAB workspace into the Simulink model. Set the block parameters as
follows:
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• Value = shadow

• Image signal = Separate color signals

5 Use the Color Space Conversion block to separate the luma information
from the color information. Set the block parameters as follows:

• Conversion = sR'G'B' to L*a*b*

• Image signal = Separate color signals

Because the range of the L* values is between 0 and 100, you must
normalize them to be between zero and one before you pass them to the
Histogram Equalization block, which expects floating point input in this
range.

6 Use the Constant block to define a normalization factor. Set the Constant
value parameter to 100.

7 Use the Divide block to normalize the L* values to be between 0 and 1.
Accept the default parameters.

8 Use the Histogram Equalization block to modify the contrast in the image.
This block enhances the contrast of images by transforming the luma values
in the color image so that the histogram of the output image approximately
matches a specified histogram. Accept the default parameters.

9 Use the Product block to scale the values back to be between the 0 to 100
range. Accept the default parameters.

10 Use the Color Space Conversion1 block to convert the values back to the
sR’G’B’ color space. Set the block parameters as follows:

• Conversion = L*a*b* to sR'G'B'

• Image signal = Separate color signals

11 Use the Video Viewer blocks to view the original and modified images. For
each block, set the Image signal parameter to Separate color signals
from the file menu.

12 Connect the blocks as shown in the following figure.
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13 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)
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14 Run the model.

As shown in the following figure, the model displays the original image in
the Video Viewer1 window.
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As the next figure shows, the model displays the enhanced contrast image
in the Video Viewer window.

In this example, you used the Histogram Equalization block to transform
the values in a color image so that the histogram of the output image
approximately matches a uniform histogram. For more information, see the
Histogram Equalization reference page.
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Remove Salt and Pepper Noise from Images
Median filtering is a common image enhancement technique for removing
salt and pepper noise. Because this filtering is less sensitive than linear
techniques to extreme changes in pixel values, it can remove salt and pepper
noise without significantly reducing the sharpness of an image. In this topic,
you use the Median Filter block to remove salt and pepper noise from an
intensity image:

ex_vision_remove_noise

1 Define an intensity image in the MATLAB workspace and add noise to it by
typing the following at the MATLAB command prompt:

I= double(imread('circles.png'));
I= imnoise(I,'salt & pepper',0.02);

Iis a 256-by-256 matrix of 8-bit unsigned integer values.

The model provided with this example already includes this code in
file>Model Properties>Model Properties>InitFcn, and executes it
prior to simulation.

2 To view the image this matrix represents, at the MATLAB command
prompt, type

imshow(I)
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The intensity image contains noise that you want your model to eliminate.

3 Create a Simulink model, and add the blocks shown in the following table.

Block Library Quantity

Image From
Workspace

Computer Vision System Toolbox >
Sources

1

Median Filter Computer Vision System Toolbox >
Filtering

1

Video Viewer Computer Vision System Toolbox >
Sinks

2

4 Use the Image From Workspace block to import the noisy image into your
model. Set the Value parameter to I.
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5 Use the Median Filter block to eliminate the black and white speckles in
the image. Use the default parameters.

The Median Filter block replaces the central value of the 3-by-3
neighborhood with the median value of the neighborhood. This process
removes the noise in the image.

6 Use the Video Viewer blocks to display the original noisy image, and
the modified image. Images are represented by 8-bit unsigned integers.
Therefore, a value of 0 corresponds to black and a value of 255 corresponds
to white. Accept the default parameters.

7 Connect the blocks as shown in the following figure.
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8 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

9 Run the model.
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The original noisy image appears in the Video Viewer window. To view
the image at its true size, right-click the window and select Set Display
To True Size.

The cleaner image appears in the Video Viewer1 window. The following
image is shown at its true size.
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You have used the Median Filter block to remove noise from your image. For
more information about this block, see the Median Filter block reference page
in the Computer Vision System Toolbox Reference.
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Sharpen an Image
To sharpen a color image, you need to make the luma intensity transitions
more acute, while preserving the color information of the image. To do this,
you convert an R’G’B’ image into the Y’CbCr color space and apply a highpass
filter to the luma portion of the image only. Then, you transform the image
back to the R’G’B’ color space to view the results. To blur an image, you apply
a lowpass filter to the luma portion of the image. This example shows how
to use the 2-D FIR Filter block to sharpen an image. The prime notation
indicates that the signals are gamma corrected.

ex_vision_sharpen_image

1 Define an R’G’B’ image in the MATLAB workspace. To read in an R’G’B’
image from a PNG file and cast it to the double-precision data type, at the
MATLAB command prompt, type

I= im2double(imread('peppers.png'));

I is a 384-by-512-by-3 array of double-precision floating-point values.
Each plane of this array represents the red, green, or blue color values
of the image.

The model provided with this example already includes this code in
file>Model Properties>Model Properties>InitFcn, and executes it
prior to simulation.

2 To view the image this array represents, type this command at the
MATLAB command prompt:

imshow(I)
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Now that you have defined your image, you can create your model.

3 Create a new Simulink model, and add to it the blocks shown in the
following table.
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Block Library Quantity

Image From
Workspace

Computer Vision System Toolbox >
Sources

1

Color Space
Conversion

Computer Vision System Toolbox >
Conversions

2

2-D FIR Filter Computer Vision System Toolbox >
Filtering

1

Video Viewer Computer Vision System Toolbox > Sinks 1

4 Use the Image From Workspace block to import the R’G’B’ image from the
MATLAB workspace. Set the parameters as follows:

• Main pane, Value = I

• Main pane, Image signal = Separate color signals

The block outputs the R’, G’, and B’ planes of the I array at the output ports.

5 The first Color Space Conversion block converts color information from
the R’G’B’ color space to the Y’CbCr color space. Set the Image signal
parameter to Separate color signals

6 Use the 2-D FIR Filter block to filter the luma portion of the image. Set the
block parameters as follows:

• Coefficients = fspecial('unsharp')

• Output size = Same as input port I

• Padding options = Symmetric

• Filtering based on = Correlation

The fspecial('unsharp') command creates two-dimensional highpass
filter coefficients suitable for correlation. This highpass filter sharpens the
image by removing the low frequency noise in it.

7 The second Color Space Conversion block converts the color information
from the Y’CbCr color space to the R’G’B’ color space. Set the block
parameters as follows:

• Conversion = Y'CbCr to R'G'B'
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• Image signal = Separate color signals

8 Use the Video Viewer block to automatically display the new, sharper
image in the Video Viewer window when you run the model. Set the Image
signal parameter to Separate color signals, by selecting File > Image
Signal.

9 Connect the blocks as shown in the following figure.

10 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

11 Run the model.

A sharper version of the original image appears in the Video Viewer
window.
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To blur the image, double-click the 2-D FIR Filter block. Set Coefficients
parameter to fspecial('gaussian',[15 15],7) and then click OK. The
fspecial('gaussian',[15 15],7) command creates two-dimensional
Gaussian lowpass filter coefficients. This lowpass filter blurs the image by
removing the high frequency noise in it.

In this example, you used the Color Space Conversion and 2-D FIR Filter
blocks to sharpen an image. For more information, see the Color Space
Conversion and 2-D FIR Filter, and fspecial reference pages.
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7 Statistics and Morphological Operations

Find the Histogram of an Image
The Histogram block computes the frequency distribution of the elements in
each input image by sorting the elements into a specified number of discrete
bins. You can use the Histogram block to calculate the histogram of the R,
G, and/or B values in an image. This example shows you how to accomplish
this task:

Note Running this example requires a DSP System Toolbox license.

You can open the example model by typing

ex_vision_find_histogram

on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

1

Video Viewer Computer Vision System Toolbox >
Sinks

1

Matrix
Concatenate

Simulink > Math Operations 1

Vector Scope DSP System Toolbox > Sinks 1

Histogram DSP System Toolbox > Statistics 3

2 Use the Image From File block to import an RGB image. Set the block
parameters as follows:

• Sample time = inf

• Image signal = Separate color signals

• Output port labels: = R|G|B
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• On the Data Types tab, Output data type: = double

3 Use the Video Viewer block to automatically display the original image
in the viewer window when you run the model. Set the Image signal
parameter to Separate color signals from the File menu.

4 Use the Histogram blocks to calculate the histogram of the R, G, and B
values in the image. Set the Main tab block parameters for the three
Histogram blocks as follows:

• Lower limit of histogram: 0

• Upper limit of histogram: 1

• Number of bins: = 256

• Find the histogram over: = Entire Input

The R, G, and B input values to the Histogram block are double-precision
floating point and range between 0 and 1. The block creates 256 bins
between the maximum and minimum input values and counts the number
of R, G, and B values in each bin.

5 Use the Matrix Concatenate block to concatenate the R, G, and B column
vectors into a single matrix so they can be displayed using the Vector Scope
block. Set the Number of inputs parameter to 3.

6 Use the Vector Scope block to display the histograms of the R, G, and B
values of the input image. Set the block parameters as follows:

• Scope Properties pane, Input domain = User-defined

• Display Properties pane, clear the Frame number check box

• Display Properties pane, select the Channel legend check box

• Display Properties pane, select the Compact display check box

• Axis Properties pane, clear the Inherit sample increment from
input check box.

• Axis Properties pane, Minimum Y-limit = 0

• Axis Properties pane, Maximum Y-limit = 1

• Axis Properties pane, Y-axis label = Count
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• Line Properties pane, Line markers = .|s|d

• Line Properties pane, Line colors = [1 0 0]|[0 1 0]|[0 0 1]

7 Connect the blocks as shown in the following figure.
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8 Open the Configuration dialog box by selecting Model Configuration
Parameters from the Simulation menu. Set the parameters as follows:

• Solver pane, Stop time = 0
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• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

9 Run the model using either the simulation button, or by selecting
Simulation > Start.

The original image appears in the Video Viewer window.

10 Right-click in the Vector Scope window and select Autoscale.

The scaled histogram of the image appears in the Vector Scope window.
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You have now used the 2-D Histogram block to calculate the histogram of the
R, G, and B values in an RGB image. To open a model that illustrates how to
use this block to calculate the histogram of the R, G, and B values in an RGB
video stream, type viphistogram at the MATLAB command prompt.
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Correct Nonuniform Illumination
Global threshold techniques, which are often the first step in object
measurement, cannot be applied to unevenly illuminated images. To correct
this problem, you can change the lighting conditions and take another picture,
or you can use morphological operators to even out the lighting in the image.
Once you have corrected for nonuniform illumination, you can pick a global
threshold that delineates every object from the background. In this topic, you
use the Opening block to correct for uneven lighting in an intensity image:

You can open the example model by typing

ex_vision_correct_nonuniform

on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

1

Opening Computer Vision System Toolbox >
Morphological Operations

1

Video Viewer Computer Vision System Toolbox >
Sinks

4

Constant Simulink > Sources 1

Sum Simulink > Math Operations 2

Data Type Conversion Simulink > Signal Attributes 1

2 Use the Image From File block to import the intensity image. Set the File
name parameter to rice.png. This image is a 256-by-256 matrix of 8-bit
unsigned integer values.

3 Use the Video Viewer block to view the original image. Accept the default
parameters.
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4 Use the Opening block to estimate the background of the image.
Set the Neighborhood or structuring element parameter to
strel('disk',15).

The strel function creates a circular STREL object with a radius of 15
pixels. When working with the Opening block, pick a STREL object that
fits within the objects you want to keep. It often takes experimentation to
find the neighborhood or STREL object that best suits your application.

5 Use the Video Viewer1 block to view the background estimated by the
Opening block. Accept the default parameters.

6 Use the first Sum block to subtract the estimated background from the
original image. Set the block parameters as follows:

• Icon shape = rectangular

• List of signs = -+

7 Use the Video Viewer2 block to view the result of subtracting the
background from the original image. Accept the default parameters.

8 Use the Constant block to define an offset value. Set the Constant value
parameter to 80.

9 Use the Data Type Conversion block to convert the offset value to an 8-bit
unsigned integer. Set the Output data type mode parameter to uint8.

10 Use the second Sum block to lighten the image so that it has the same
brightness as the original image. Set the block parameters as follows:

• Icon shape = rectangular

• List of signs = ++

11 Use the Video Viewer3 block to view the corrected image. Accept the
default parameters.

12 Connect the blocks as shown in the following figure.
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13 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = discrete (no continuous states)
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14 Run the model.

The original image appears in the Video Viewer window.

The estimated background appears in the Video Viewer1 window.
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The image without the estimated background appears in the Video Viewer2
window.
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The preceding image is too dark. The Constant block provides an offset
value that you used to brighten the image.

The corrected image, which has even lighting, appears in the Video Viewer3
window. The following image is shown at its true size.
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In this section, you have used the Opening block to remove irregular
illumination from an image. For more information about this block, see
the Opening reference page. For related information, see the Top-hat block
reference page. For more information about STREL objects, see the strel
function in the Image Processing Toolbox documentation.
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Count Objects in an Image
In this example, you import an intensity image of a wheel from the MATLAB
workspace and convert it to binary. Then, using the Opening and Label blocks,
you count the number of spokes in the wheel. You can use similar techniques
to count objects in other intensity images. However, you might need to use
additional morphological operators and different structuring elements.

Note Running this example requires a DSP System Toolbox license.

You can open the example model by typing

ex_vision_count_objects

on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

1

Opening Computer Vision System Toolbox>
Morphological Operations

1

Label Computer Vision System Toolbox >
Morphological Operations

1

Video Viewer Computer Vision System Toolbox >
Sinks

2

Constant Simulink > Sources 1

Relational Operator Simulink > Logic and Bit
Operations

1

Display DSP System Toolbox > Sinks 1
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2 Use the Image From File block to import your image. Set the File name
parameter to testpat1.png. This is a 256-by-256 matrix image of 8-bit
unsigned integers.

3 Use the Constant block to define a threshold value for the Relational
Operator block. Set the Constant value parameter to 200.

4 Use the Video Viewer block to view the original image. Accept the default
parameters.

5 Use the Relational Operator block to perform a thresholding operation
that converts your intensity image to a binary image. Set the Relational
Operator parameter to <.

If the input to the Relational Operator block is less than 200, its output is
1; otherwise, its output is 0. You must threshold your intensity image
because the Label block expects binary input. Also, the objects it counts
must be white.

6 Use the Opening block to separate the spokes from the rim and from each
other at the center of the wheel. Use the default parameters.

The strel function creates a circular STREL object with a radius of 5
pixels. When working with the Opening block, pick a STREL object that
fits within the objects you want to keep. It often takes experimentation to
find the neighborhood or STREL object that best suits your application.

7 Use the Video Viewer1 block to view the opened image. Accept the default
parameters.

8 Use the Label block to count the number of spokes in the input image. Set
the Output parameter to Number of labels.

9 The Display block displays the number of spokes in the input image. Use
the default parameters.

10 Connect the block as shown in the following figure.
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11 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = discrete (no continuous states)

12 Run the model.
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The original image appears in the Video Viewer1 window. To view the
image at its true size, right-click the window and select Set Display To
True Size.

The opened image appears in the Video Viewer window. The following
image is shown at its true size.
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As you can see in the preceding figure, the spokes are now separate white
objects. In the model, the Display block correctly indicates that there are
24 distinct spokes.
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You have used the Opening and Label blocks to count the number of spokes
in an image. For more information about these blocks, see the Opening and
Label block reference pages in the Computer Vision System Toolbox Reference.
If you want to send the number of spokes to the MATLAB workspace, use the
To Workspace block in Simulink or the Signal to Workspace block in DSP
System Toolbox. For more information about STREL objects, see strel in the
Image Processing Toolbox documentation.
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Fixed-Point Signal Processing

In this section...

“Fixed-Point Features” on page 8-2

“Benefits of Fixed-Point Hardware” on page 8-2

“Benefits of Fixed-Point Design with System Toolboxes Software” on page
8-3

Note To take full advantage of fixed-point support in System Toolbox
software, you must install Fixed-Point Designer™ software.

Fixed-Point Features
Many of the blocks in this product have fixed-point support, so you can design
signal processing systems that use fixed-point arithmetic. Fixed-point support
in DSP System Toolbox software includes

• Signed two’s complement and unsigned fixed-point data types

• Word lengths from 2 to 128 bits in simulation

• Word lengths from 2 to the size of a long on the Simulink Coder C
code-generation target

• Overflow handling and rounding methods

• C code generation for deployment on a fixed-point embedded processor,
with Simulink Coder code generation software. The generated code uses all
allowed data types supported by the embedded target, and automatically
includes all necessary shift and scaling operations

Benefits of Fixed-Point Hardware
There are both benefits and trade-offs to using fixed-point hardware rather
than floating-point hardware for signal processing development. Many signal
processing applications require low-power and cost-effective circuitry, which
makes fixed-point hardware a natural choice. Fixed-point hardware tends to
be simpler and smaller. As a result, these units require less power and cost
less to produce than floating-point circuitry.

8-2



Fixed-Point Signal Processing

Floating-point hardware is usually larger because it demands functionality
and ease of development. Floating-point hardware can accurately represent
real-world numbers, and its large dynamic range reduces the risk of overflow,
quantization errors, and the need for scaling. In contrast, the smaller dynamic
range of fixed-point hardware that allows for low-power, inexpensive units
brings the possibility of these problems. Therefore, fixed-point development
must minimize the negative effects of these factors, while exploiting the
benefits of fixed-point hardware; cost- and size-effective units, less power and
memory usage, and fast real-time processing.

Benefits of Fixed-Point Design with System Toolboxes
Software
Simulating your fixed-point development choices before implementing them
in hardware saves time and money. The built-in fixed-point operations
provided by the System Toolboxes software save time in simulation and allow
you to generate code automatically.

This software allows you to easily run multiple simulations with different
word length, scaling, overflow handling, and rounding method choices to
see the consequences of various fixed-point designs before committing
to hardware. The traditional risks of fixed-point development, such as
quantization errors and overflow, can be simulated and mitigated in software
before going to hardware.

Fixed-point C code generation with System Toolbox software and Simulink
Coder code generation software produces code ready for execution on a
fixed-point processor. All the choices you make in simulation in terms
of scaling, overflow handling, and rounding methods are automatically
optimized in the generated code, without necessitating time-consuming and
costly hand-optimized code.
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Fixed-Point Concepts and Terminology

In this section...

“Fixed-Point Data Types” on page 8-4

“Scaling” on page 8-5

“Precision and Range” on page 8-6

Note The “Glossary” defines much of the vocabulary used in these sections.
For more information on these subjects, see the “Fixed-Point Designer”
documentation.

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is
a fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. In this section, we discuss many terms and concepts relating to
fixed-point numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of
the binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:
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where

• bi is the i
th binary digit.

• wl is the word length in bits.

• bwl–1 is the location of the most significant, or highest, bit (MSB).

• b0 is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is used by System Toolbox software. See “Two’s Complement”
on page 8-11 for more information.

Scaling
Fixed-point numbers can be encoded according to the scheme

real world value slope integer bias-   ( )

where the slope can be expressed as

slope slope adjustment exponent  2

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In System Toolboxes, the negative of the exponent is often referred to as
the fraction length.
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The slope and bias together represent the scaling of the fixed-point number.
In a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a number
in the Fixed-Point Designer [Slope Bias] representation that has a bias equal
to zero and a slope adjustment equal to one. This is referred to as binary
point-only scaling or power-of-two scaling:

real world value integerexponent-   2

or

real world value integerfraction length-   2

In System Toolbox software, you can define a fixed-point data type and scaling
for the output or the parameters of many blocks by specifying the word length
and fraction length of the quantity. The word length and fraction length
define the whole of the data type and scaling information for binary-point
only signals.

All System Toolbox blocks that support fixed-point data types support signals
with binary-point only scaling. Many fixed-point blocks that do not perform
arithmetic operations but merely rearrange data, such as Delay and Matrix
Transpose, also support signals with [Slope Bias] scaling.

Precision and Range
You must pay attention to the precision and range of the fixed-point data
types and scalings you choose for the blocks in your simulations, in order to
know whether rounding methods will be invoked or if overflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling
can represent. The range of representable numbers for a two’s complement
fixed-point number of word length wl, scaling S, and bias B is illustrated
below:
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For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2wl–1. Because there is only one
representation for zero, there are an unequal number of positive and negative
numbers. This means there is a representation for -2wl–1 but not for 2wl –1:

Overflow Handling. Because a fixed-point data type represents numbers
within a finite range, overflows can occur if the result of an operation is larger
or smaller than the numbers in that range.

System Toolbox software does not allow you to add guard bits to a data type
on-the-fly in order to avoid overflows. Any guard bits must be allocated
upon model initialization. However, the software does allow you to either
saturate or wrap overflows. Saturation represents positive overflows as the
largest positive number in the range being used, and negative overflows as
the largest negative number in the range being used. Wrapping uses modulo
arithmetic to cast an overflow back into the representable range of the data
type. See “Modulo Arithmetic” on page 8-10 for more information.

Precision
The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
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of its least significant bit. The value of the least significant bit, and therefore
the precision of the number, is determined by the number of fractional bits.
A fixed-point value can be represented to within half of the precision of its
data type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 2-4 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

Rounding Modes. When you represent numbers with finite precision,
not every number in the available range can be represented exactly. If a
number cannot be represented exactly by the specified data type and scaling,
it is rounded to a representable number. Although precision is always lost
in the rounding operation, the cost of the operation and the amount of bias
that is introduced depends on the rounding mode itself. To provide you with
greater flexibility in the trade-off between cost and bias, DSP System Toolbox
software currently supports the following rounding modes:

• Ceiling rounds the result of a calculation to the closest representable
number in the direction of positive infinity.

• Convergent rounds the result of a calculation to the closest representable
number. In the case of a tie, Convergent rounds to the nearest even
number. This is the least biased rounding mode provided by the toolbox.

• Floor, which is equivalent to truncation, rounds the result of a calculation
to the closest representable number in the direction of negative infinity.

• Nearest rounds the result of a calculation to the closest representable
number. In the case of a tie, Nearest rounds to the closest representable
number in the direction of positive infinity.

• Round rounds the result of a calculation to the closest representable
number. In the case of a tie, Round rounds positive numbers to the closest
representable number in the direction of positive infinity, and rounds
negative numbers to the closest representable number in the direction
of negative infinity.

• Simplest rounds the result of a calculation using the rounding mode
(Floor or Zero) that adds the least amount of extra rounding code to your
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generated code. For more information, see “Rounding Mode: Simplest” in
the Fixed-Point Designer documentation.

• Zero rounds the result of a calculation to the closest representable number
in the direction of zero.

To learn more about each of these rounding modes, see “Rounding” in the
Fixed-Point Designer documentation.

For a direct comparison of the rounding modes, see “Choosing a Rounding
Method” in the Fixed-Point Designer documentation.
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Arithmetic Operations

In this section...

“Modulo Arithmetic” on page 8-10

“Two’s Complement” on page 8-11

“Addition and Subtraction” on page 8-12

“Multiplication” on page 8-13

“Casts” on page 8-16

Note These sections will help you understand what data type and scaling
choices result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only
a finite set of numbers, wrapping the results of any calculations that fall
outside the given set back into the set.
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For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the “clock” system, 9
plus 9 equals 6. This can be more easily visualized as a number circle:

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped “around the circle” to either 0
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s
complement, positive numbers always start with a 0 and negative numbers
always start with a 1. If the leading bit of a two’s complement number is 0,
the value is obtained by calculating the standard binary value of the number.
If the leading bit of a two’s complement number is 1, the value is obtained by
assuming that the leftmost bit is negative, and then calculating the binary
value of the number. For example,
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01 0 2 1

11 2 2 2 1 1

0

1 0

  

       

( )

(( ) ( )) ( )

To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”

2 Add a 1 using binary math.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

11010 00101

Next, add a 1, wrapping all numbers to 0 or 1:

00101
1

00110 6


( )

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic
so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010 1
0110 110

011001 010

18 5
6 75

25 25

.

.

.

( . )
( . )

( . )


Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends
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must be sign extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

Most fixed-point DSP System Toolbox blocks that perform addition cast the
adder inputs to an accumulator data type before performing the addition.
Therefore, no further shifting is necessary during the addition to line up the
binary points. See “Casts” on page 8-16 for more information.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign extended so that their left sides align
before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types
The following diagrams show the data types used for fixed-point multiplication
in the System Toolbox software. The diagrams illustrate the differences
between the data types used for real-real, complex-real, and complex-complex
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multiplication. See individual reference pages to determine whether a
particular block accepts complex fixed-point inputs.

In most cases, you can set the data types used during multiplication in the
block mask. See Accumulator Parameters, Intermediate Product Parameters,
Product Output Parameters, and Output Parameters. These data types are
defined in “Casts” on page 8-16.

Note The following diagrams show the use of fixed-point data types in
multiplication in System Toolbox software. They do not represent actual
subsystems used by the software to perform multiplication.

Real-Real Multiplication. The following diagram shows the data types
used in the multiplication of two real numbers in System Toolbox software.
The software returns the output of this operation in the product output data
type, as the next figure shows.

Real-Complex Multiplication. The following diagram shows the data types
used in the multiplication of a real and a complex fixed-point number in
System Toolbox software. Real-complex and complex-real multiplication are
equivalent. The software returns the output of this operation in the product
output data type, as the next figure shows.
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Complex-Complex Multiplication. The following diagram shows the
multiplication of two complex fixed-point numbers in System Toolbox
software. Note that the software returns the output of this operation in the
accumulator output data type, as the next figure shows.
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System Toolbox blocks cast to the accumulator data type before performing
addition or subtraction operations. In the preceding diagram, this is
equivalent to the C code

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator.

Casts
Many fixed-point System Toolbox blocks that perform arithmetic operations
allow you to specify the accumulator, intermediate product, and product
output data types, as applicable, as well as the output data type of the block.
This section gives an overview of the casts to these data types, so that you can
tell if the data types you select will invoke sign extension, padding with zeros,
rounding, and/or overflow.

Casts to the Accumulator Data Type
For most fixed-point System Toolbox blocks that perform addition or
subtraction, the operands are first cast to an accumulator data type. Most
of the time, you can specify the accumulator data type on the block mask.
See Accumulator Parameters. Since the addends are both cast to the same
accumulator data type before they are added together, no extra shift is
necessary to insure that their binary points align. The result of the addition
remains in the accumulator data type, with the possibility of overflow.

Casts to the Intermediate Product or Product Output Data Type
For System Toolbox blocks that perform multiplication, the output of the
multiplier is placed into a product output data type. Blocks that then feed the
product output back into the multiplier might first cast it to an intermediate
product data type. Most of the time, you can specify these data types on the
block mask. See Intermediate Product Parameters and Product Output
Parameters.
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Casts to the Output Data Type
Many fixed-point System Toolbox blocks allow you to specify the data type and
scaling of the block output on the mask. Remember that the software does
not allow mixed types on the input and output ports of its blocks. Therefore,
if you would like to specify a fixed-point output data type and scaling for a
System Toolbox block that supports fixed-point data types, you must feed the
input port of that block with a fixed-point signal. The final cast made by a
fixed-point System Toolbox block is to the output data type of the block.

Note that although you can not mix fixed-point and floating-point signals
on the input and output ports of blocks, you can have fixed-point signals
with different word and fraction lengths on the ports of blocks that support
fixed-point signals.

Casting Examples
It is important to keep in mind the ramifications of each cast when selecting
these intermediate data types, as well as any other intermediate fixed-point
data types that are allowed by a particular block. Depending upon the data
types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.
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Cast from a Shorter Data Type to a Longer Data Type. Consider the
cast of a nonzero number, represented by a four-bit data type with two
fractional bits, to an eight-bit data type with seven fractional bits:

As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does
not fit, so overflow might occur and the result can saturate or wrap. The
empty bits at the low end of the destination data type are padded with either
0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.

You can see that even with a cast from a shorter data type to a longer data
type, overflow might still occur. This can happen when the integer length of
the source data type (in this case two) is longer than the integer length of
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the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if
the destination data type and scaling has fewer fractional bits than the source.

Cast from a Longer Data Type to a Shorter Data Type. Consider the
cast of a nonzero number, represented by an eight-bit data type with seven
fractional bits, to a four-bit data type with two fractional bits:

As the diagram shows, the source bits are shifted down so that the binary
point matches the destination binary point position. There is no value for the
highest bit from the source, so the result is sign extended to fill the integer
portion of the destination data type. The bottom five bits of the source do not
fit into the fraction length of the destination. Therefore, precision can be
lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter
data type, all the integer bits are maintained. Conversely, full precision can
be maintained even if you cast to a shorter data type, as long as the fraction
length of the destination data type is the same length or longer than the
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fraction length of the source data type. In that case, however, bits are lost
from the high end of the result and overflow might occur.

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.
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Fixed-Point Support for MATLAB System Objects

In this section...

“Getting Information About Fixed-Point System Objects” on page 8-21

“Displaying Fixed-Point Properties” on page 8-22

“Setting System Object Fixed-Point Properties” on page 8-23

For information on working with Fixed-Point features, refer to the
“Fixed-Point” topic.

Getting Information About Fixed-Point System
Objects
System objects that support fixed-point data processing have fixed-point
properties, which you can display for a particular object by typing
vision.<ObjectName>.helpFixedPoint at the command line.

See “Displaying Fixed-Point Properties” on page 8-22 to set the display of
System object fixed-point properties.

The following Computer Vision System Toolbox objects support fixed-point
data processing.

Fixed-Point Data Processing Support

vision.AlphaBlender
vision.Autocorrelator
vision.Autothresholder
vision.BlobAnalysis
vision.BlockMatcher
vision.ContrastAdjuster
vision.Convolver
vision.CornerDetector
vision.Crosscorrelator
vision.DCT
vision.Deinterlacer
vision.DemosaicInterpolator
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vision.EdgeDetector
vision.FFT
vision.GeometricRotator
vision.GeometricScaler
vision.GeometricTranslator
vision.Histogram
vision.HoughLines
vision.HoughTransform
vision.IDCT
vision.IFFT
vision.ImageDataTypeConverter
vision.ImageFilter
vision.MarkerInserter
vision.Maximum
vision.Mean
vision.Median
vision.MedianFilter
vision.Minimum
vision.OpticalFlow
vision.PSNR
vision.Pyramid
vision.SAD
vision.ShapeInserter
vision.Variance

Displaying Fixed-Point Properties
You can control whether the software displays fixed-point properties with
either of the following commands:

• matlab.system.showFixedPointProperties

• matlab.system.hideFixedPointProperties

at the MATLAB command line. These commands set the Show fixed-point
properties display option. You can also set the display option directly via
the MATLAB preferences dialog box. Select the Preferences icon from
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the MATLAB desktop, and then select System Objects. Finally, select or
deselect Show fixed-point properties.

If an object supports fixed-point data processing, its fixed-point properties are
active regardless of whether they are displayed or not.

Setting System Object Fixed-Point Properties
A number of properties affect the fixed-point data processing used by a
System object. Objects perform fixed-point processing and use the current
fixed-point property settings when they receive fixed-point input.
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You change the values of fixed-point properties in the same way as you
change any System object property value. You also use the Fixed-Point
Designer numerictype object to specify the desired data type as fixed-point,
the signedness, and the word- and fraction-lengths.

In the same way as for blocks, the data type properties of many System
objects can set the appropriate word lengths and scalings automatically by
using full precision. System objects assume that the target specified on the
Configuration Parameters Hardware Implementation target is ASIC/FPGA.

If you have not set the property that activates a dependent property
and you attempt to change that dependent property, a warning message
displays. For example, for the vision.EdgeDetector object, before you
set CustomProductDataType to numerictype(1,16,15) you must set
ProductDataType to 'Custom'.

Note System objects do not support fixed-point word lengths greater than
128 bits.

For any System object provided in the Toolbox, the fimath settings for any
fimath attached to a fi input or a fi property are ignored. Outputs from a
System object never have an attached fimath.
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Specify Fixed-Point Attributes for Blocks

In this section...

“Fixed-Point Block Parameters” on page 8-25

“Specify System-Level Settings” on page 8-28

“Inherit via Internal Rule” on page 8-29

“Specify Data Types for Fixed-Point Blocks” on page 8-40

Fixed-Point Block Parameters
System Toolbox blocks that have fixed-point support usually allow you to
specify fixed-point characteristics through block parameters. By specifying
data type and scaling information for these fixed-point parameters, you can
simulate your target hardware more closely.

Note Floating-point inheritance takes precedence over the settings discussed
in this section. When the block has floating-point input, all block data types
match the input.

You can find most fixed-point parameters on the Data Types pane of System
Toolbox blocks. The following figure shows a typical Data Types pane.
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All System Toolbox blocks with fixed-point capabilities share a set of common
parameters, but each block can have a different subset of these fixed-point
parameters. The following table provides an overview of the most common
fixed-point block parameters.

Fixed-Point Data
Type Parameter

Description

Rounding Mode Specifies the rounding mode for the block to use when
the specified data type and scaling cannot exactly
represent the result of a fixed-point calculation.

See “Rounding Modes” on page 8-8 for more
information on the available options.

Overflow Mode Specifies the overflow mode to use when the result
of a fixed-point calculation does not fit into the
representable range of the specified data type.
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Fixed-Point Data
Type Parameter

Description

See “Overflow Handling” on page 8-7 for more
information on the available options.

Intermediate
Product

Specifies the data type and scaling of the intermediate
product for fixed-point blocks. Blocks that feed
multiplication results back to the input of the
multiplier use the intermediate product data type.

See the reference page of a specific block to learn
about the intermediate product data type for that
block.

Product Output Specifies the data type and scaling of the product
output for fixed-point blocks that must compute
multiplication results.

See the reference page of a specific block to learn
about the product output data type for that block. For
or complex-complex multiplication, the multiplication
result is in the accumulator data type. See
“Multiplication Data Types” on page 8-13 for more
information on complex fixed-point multiplication in
System toolbox software.

Accumulator Specifies the data type and scaling of the accumulator
(sum) for fixed-point blocks that must hold summation
results for further calculation. Most such blocks cast
to the accumulator data type before performing the
add operations (summation).

See the reference page of a specific block for details on
the accumulator data type of that block.

Output Specifies the output data type and scaling for blocks.
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Using the Data Type Assistant
The Data Type Assistant is an interactive graphical tool available on the
Data Types pane of some fixed-point System Toolbox blocks.

To learn more about using the Data Type Assistant to help you specify
block data type parameters, see the following section of the Simulink
documentation:

“Specify Data Types Using Data Type Assistant”

Checking Signal Ranges
Some fixed-point System Toolbox blocks have Minimum and Maximum
parameters on the Data Types pane. When a fixed-point data type has these
parameters, you can use them to specify appropriate minimum and maximum
values for range checking purposes.

To learn how to specify signal ranges and enable signal range checking, see
“Signal Ranges” in the Simulink documentation.

Specify System-Level Settings
You can monitor and control fixed-point settings for System Toolbox blocks
at a system or subsystem level with the Fixed-Point Tool. For additional
information on these subjects, see

• The fxptdlg reference page — A reference page on the Fixed-Point Tool in
the Simulink documentation

• “Fixed-Point Tool” — A tutorial that highlights the use of the Fixed-Point
Tool in the Fixed-Point Designer software documentation

Logging
The Fixed-Point Tool logs overflows, saturations, and simulation minimums
and maximums for fixed-point System Toolbox blocks. The Fixed-Point Tool
does not log overflows and saturations when the Data overflow line in the
Diagnostics > Data Integrity pane of the Configuration Parameters dialog
box is set to None.
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Autoscaling
You can use the Fixed-Point Tool autoscaling feature to set the scaling for
System Toolbox fixed-point data types.

Data type override
System Toolbox blocks obey the Use local settings, Double, Single, and
Off modes of the Data type override parameter in the Fixed-Point Tool.
The Scaled double mode is also supported for System Toolboxes source and
byte-shuffling blocks, and for some arithmetic blocks such as Difference and
Normalization.

Inherit via Internal Rule
Selecting appropriate word lengths and scalings for the fixed-point parameters
in your model can be challenging. To aid you, an Inherit via internal
rule choice is often available for fixed-point block data type parameters,
such as the Accumulator and Product output signals. The following
sections describe how the word and fraction lengths are selected for you when
you choose Inherit via internal rule for a fixed-point block data type
parameter in System Toolbox software:

• “Internal Rule for Accumulator Data Types” on page 8-29

• “Internal Rule for Product Data Types” on page 8-30

• “Internal Rule for Output Data Types” on page 8-31

• “The Effect of the Hardware Implementation Pane on the Internal Rule”
on page 8-31

• “Internal Rule Examples” on page 8-33

Note In the equations in the following sections, WL = word length and FL =
fraction length.

Internal Rule for Accumulator Data Types
The internal rule for accumulator data types first calculates the ideal,
full-precision result. Where N is the number of addends:
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WL WL Nideal accumulator input to accumulator  floor(log ( )2 1 )) 1

FL FLideal accumulator input to accumulator

For example, consider summing all the elements of a vector of length 6 and
data type sfix10_En8. The ideal, full-precision result has a word length of
13 and a fraction length of 8.

The accumulator can be real or complex. The preceding equations are used for
both the real and imaginary parts of the accumulator. For any calculation,
after the full-precision result is calculated, the final word and fraction lengths
set by the internal rule are affected by your particular hardware. See “The
Effect of the Hardware Implementation Pane on the Internal Rule” on page
8-31 for more information.

Internal Rule for Product Data Types
The internal rule for product data types first calculates the ideal, full-precision
result:

WL WL WLideal product input 1 input 2 

FL FL FLideal product input 1 input 2 

For example, multiplying together the elements of a real vector of length 2
and data type sfix10_En8. The ideal, full-precision result has a word length of
20 and a fraction length of 16.

For real-complex multiplication, the ideal word length and fraction length is
used for both the complex and real portion of the result. For complex-complex
multiplication, the ideal word length and fraction length is used for the partial
products, and the internal rule for accumulator data types described above
is used for the final sums. For any calculation, after the full-precision result
is calculated, the final word and fraction lengths set by the internal rule
are affected by your particular hardware. See “The Effect of the Hardware
Implementation Pane on the Internal Rule” on page 8-31 for more information.
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Internal Rule for Output Data Types
A few System Toolbox blocks have an Inherit via internal rule choice
available for the block output. The internal rule used in these cases is
block-specific, and the equations are listed in the block reference page.

As with accumulator and product data types, the final output word and
fraction lengths set by the internal rule are affected by your particular
hardware, as described in “The Effect of the Hardware Implementation Pane
on the Internal Rule” on page 8-31.

The Effect of the Hardware Implementation Pane on the
Internal Rule
The internal rule selects word lengths and fraction lengths that are
appropriate for your hardware. To get the best results using the internal
rule, you must specify the type of hardware you are using on the Hardware
Implementation pane of the Configuration Parameters dialog box. You can
open this dialog box from the Simulation menu in your model.
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ASIC/FPGA. On an ASIC/FPGA target, the ideal, full-precision word length
and fraction length calculated by the internal rule are used. If the calculated
ideal word length is larger than the largest allowed word length, you receive
an error. The largest word length allowed for Simulink and System Toolbox
software is 128 bits.

Other targets. For all targets other than ASIC/FPGA, the ideal,
full-precision word length calculated by the internal rule is rounded up to the
next available word length of the target. The calculated ideal fraction length
is used, keeping the least-significant bits.

If the calculated ideal word length for a product data type is larger than the
largest word length on the target, you receive an error. If the calculated ideal
word length for an accumulator or output data type is larger than the largest
word length on the target, the largest target word length is used.
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Internal Rule Examples
The following sections show examples of how the internal rule interacts with
the Hardware Implementation pane to calculate accumulator data types
and product data types.

Accumulator Data Types. Consider the following model
ex_internalRule_accumExp.

In the Difference blocks, the Accumulator parameter is set to Inherit:
Inherit via internal rule, and the Output parameter is set to Inherit:
Same as accumulator. Therefore, you can see the accumulator data type
calculated by the internal rule on the output signal in the model.

In the preceding model, the Device type parameter in the Hardware
Implementation pane of the Configuration Parameters dialog box is set to
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ASIC/FPGA. Therefore, the accumulator data type used by the internal rule is
the ideal, full-precision result.

Calculate the full-precision word length for each of the Difference blocks in
the model:

WL WL numbideal accumulator input to accumulator  floor(log (2 eer of  accumulations

WLideal accumulator

))

floor(log (2



 

1

9 1))) 

   



1

9 0 1 10

1

WL

WL WL

ideal accumulator

ideal accumulator inpput to accumulator number of  accumulations1  floor(log ( ))2 11

16 1 11WL

WL
ideal accumulator

ideal accumula

  floor(log ( ))2

ttor

ideal accumulator input to accumulatorWL WL

1

2

16 0 1 17   

 22 1 floor(log ( ))2 number of  accumulations

WLideal accumulatoor

ideal accumulatorWL
2

2

127 1 1

127 0 1 128

  

   

floor(log ( ))2

Calculate the full-precision fraction length, which is the same for each Matrix
Sum block in this example:

FL FL

FL
ideal accumulator input to accumulator

ideal accumula



ttor  4

Now change the Device type parameter in the Hardware Implementation
pane of the Configuration Parameters dialog box to 32 bit Embedded
Processor, by changing the parameters as shown in the following figure.
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As you can see in the dialog box, this device has 8-, 16-, and 32-bit word
lengths available. Therefore, the ideal word lengths of 10, 17, and 128 bits
calculated by the internal rule cannot be used. Instead, the internal rule uses
the next largest available word length in each case You can see this if you
rerun the model, as shown in the following figure.
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Product Data Types. Consider the following model
ex_internalRule_prodExp.

In the Array-Vector Multiply blocks, the Product Output parameter is set
to Inherit: Inherit via internal rule, and the Output parameter
is set to Inherit: Same as product output. Therefore, you can see the
product output data type calculated by the internal rule on the output signal
in the model. The setting of the Accumulator parameter does not matter
because this example uses real values.

For the preceding model, the Device type parameter in the Hardware
Implementation pane of the Configuration Parameters dialog box is set
to ASIC/FPGA. Therefore, the product data type used by the internal rule is
the ideal, full-precision result.

Calculate the full-precision word length for each of the Array-Vector Multiply
blocks in the model:
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WL WL WL

WL

W

ideal product input a input b

ideal product

 

  7 5 12

LL WL WL

WL
ideal product input a input b

ideal product

1

1 16 15

 

   31

Calculate the full-precision fraction length, which is the same for each
Array-Vector Multiply block in this example:

FL FL

FL
ideal accumulator input to accumulator

ideal accumula



ttor  4

Now change the Device type parameter in the Hardware Implementation
pane of the Configuration Parameters dialog box to 32 bit Embedded
Processor, as shown in the following figure.
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As you can see in the dialog box, this device has 8-, 16-, and 32-bit word
lengths available. Therefore, the ideal word lengths of 12 and 31 bits
calculated by the internal rule cannot be used. Instead, the internal rule uses
the next largest available word length in each case. You can see this if you
rerun the model, as shown in the following figure.
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Specify Data Types for Fixed-Point Blocks
The following sections show you how to use the Fixed-Point Tool to select
appropriate data types for fixed-point blocks in the ex_fixedpoint_tut
model:

• “Prepare the Model” on page 8-40

• “Use Data Type Override to Find a Floating-Point Benchmark” on page 8-46

• “Use the Fixed-Point Tool to Propose Fraction Lengths” on page 8-47

• “Examine the Results and Accept the Proposed Scaling” on page 8-47

Prepare the Model

1 Open the model by typing ex_fixedpoint_tut at the MATLAB command line.
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This model uses the Cumulative Sum block to sum the input coming from the
Fixed-Point Sources subsystem. The Fixed-Point Sources subsystem outputs
two signals with different data types:

• The Signed source has a word length of 16 bits and a fraction length of
15 bits.

• The Unsigned source has a word length of 16 bits and a fraction length of
16 bits.

2 Run the model to check for overflow. MATLAB displays the following
warnings at the command line:

Warning: Overflow occurred. This originated from
'ex_fixedpoint_tut/Signed Cumulative Sum'.
Warning: Overflow occurred. This originated from
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'ex_fixedpoint_tut/Unsigned Cumulative Sum'.

According to these warnings, overflow occurs in both Cumulative Sum blocks.

3 To investigate the overflows in this model, use the Fixed-Point Tool. You can
open the Fixed-Point Tool by selecting Tools > Fixed-Point > Fixed-Point
Tool from the model menu. Turn on logging for all blocks in your model by
setting the Fixed-point instrumentation mode parameter to Minimums,
maximums and overflows.

4 Now that you have turned on logging, rerun the model by clicking the
Simulation button.
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• Name — Provides the name of each signal in the following format:
Subsystem Name/Block Name: Signal Name.

• SimDT — The simulation data type of each logged signal.

• SpecifiedDT— The data type specified on the block dialog for each signal.

• SimMin — The smallest representable value achieved during simulation
for each logged signal.

• SimMax — The largest representable value achieved during simulation
for each logged signal.

• OverflowWraps— The number of overflows that wrap during simulation.

For more information on each of the columns in this table, see the “Contents
Pane” section of the Simulink fxptdlg function reference page.

You can also see that the SimMin and SimMax values for the Accumulator
data types range from 0 to .9997. The logged results indicate that 8,192
overflows wrapped during simulation in the Accumulator data type of the
Signed Cumulative Sum block. Similarly, the Accumulator data type of
the Unsigned Cumulative Sum block had 16,383 overflows wrap during
simulation.

To get more information about each of these data types, highlight them in the
Contents pane, and click the Show details for selected result button

( )

6 Assume a target hardware that supports 32-bit integers, and set the
Accumulator word length in both Cumulative Sum blocks to 32. To do so,
perform the following steps:

a Right-click the Signed Cumulative Sum: Accumulator row in the
Fixed-Point Tool pane, and select Highlight Block In Model.

b Double-click the block in the model, and select the Data Types pane
of the dialog box.

c Open the Data Type Assistant for Accumulator by clicking the

Assistant button ( ) in the Accumulator data type row.
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d Set the Mode to Fixed Point. To see the representable range of the
current specified data type, click the Fixed-point details link. The tool
displays the representable maximum and representable minimum values
for the current data type.

e Change the Word length to 32, and click the Refresh details button in
the Fixed-point details section to see the updated representable range.
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When you change the value of theWord length parameter, the data type
string in the Data Type edit box automatically updates.

f ClickOK on the block dialog box to save your changes and close the window.

g Set the word length of the Accumulator data type of the Unsigned
Cumulative Sum block to 32 bits. You can do so in one of two ways:

• Type the data type string fixdt([],32,0) directly into Data Type edit
box for the Accumulator data type parameter.

• Perform the same steps you used to set the word length of the
Accumulator data type of the Signed Cumulative Sum block to 32 bits.

7 To verify your changes in word length and check for overflow, rerun your
model. To do so, click the Simulate button in the Fixed-Point Tool.

The Contents pane of the Fixed-Point Tool updates, and you can see that no
overflows occurred in the most recent simulation. However, you can also see
that the SimMin and SimMax values range from 0 to 0. This underflow
happens because the fraction length of the Accumulator data type is too
small. The SpecifiedDT cannot represent the precision of the data values.
The following sections discuss how to find a floating-point benchmark and use
the Fixed-Point Tool to propose fraction lengths.

Use Data Type Override to Find a Floating-Point Benchmark
The Data type override feature of the Fixed-Point tool allows you to
override the data types specified in your model with floating-point types.
Running your model in Double override mode gives you a reference range to
help you select appropriate fraction lengths for your fixed-point data types.
To do so, perform the following steps:

1 Open the Fixed-Point Tool and set Data type override to Double.

2 Run your model by clicking the Run simulation and store active results
button.

3 Examine the results in the Contents pane of the Fixed-Point Tool. Because
you ran the model in Double override mode, you get an accurate, idealized
representation of the simulation minimums and maximums. These values
appear in the SimMin and SimMax parameters.
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4 Now that you have an accurate reference representation of the simulation
minimum and maximum values, you can more easily choose appropriate
fraction lengths. Before making these choices, save your active results to
reference so you can use them as your floating-point benchmark. To do so,
select Results > Move Active Results To Reference from the Fixed-Point
Tool menu. The status displayed in the Run column changes from Active to
Reference for all signals in your model.

Use the Fixed-Point Tool to Propose Fraction Lengths
Now that you have your Double override results saved as a floating-point
reference, you are ready to propose fraction lengths.

1 To propose fraction lengths for your data types, you must have a set of Active
results available in the Fixed-Point Tool. To produce an active set of results,
simply rerun your model. The tool now displays both the Active results and
the Reference results for each signal.

2 Select the Use simulation min/max if design min/max is not available
check box. You did not specify any design minimums or maximums for the
data types in this model. Thus, the tool uses the logged information to compute
and propose fraction lengths. For information on specifying design minimums
and maximums, see “Signal Ranges” in the Simulink documentation.

3 Click the Propose fraction lengths button ( ). The tool populates the
proposed data types in the ProposedDT column of the Contents pane. The
corresponding proposed minimums and maximums are displayed in the
ProposedMin and ProposedMax columns.

Examine the Results and Accept the Proposed Scaling
Before accepting the fraction lengths proposed by the Fixed-Point Tool, it is
important to look at the details of that data type. Doing so allows you to see
how much of your data the suggested data type can represent. To examine the
suggested data types and accept the proposed scaling, perform the following
steps:

1 In the Contents pane of the Fixed-Point Tool, you can see the proposed
fraction lengths for the data types in your model.

8-47



8 Fixed-Point Design

• The proposed fraction length for the Accumulator data type of both the
Signed and Unsigned Cumulative Sum blocks is 17 bits.

• To get more details about the proposed scaling for a particular data type,
highlight the data type in the Contents pane of the Fixed-Point Tool.

• Open the Autoscale Information window for the highlighted data type
by clicking the Show autoscale information for the selected result

button ( ).

2 When the Autoscale Information window opens, check the Value and
Percent Proposed Representable columns for the Simulation Minimum
and Simulation Maximum parameters. You can see that the proposed data
type can represent 100% of the range of simulation data.

3 To accept the proposed data types, select the check box in the Accept column
for each data type whose proposed scaling you want to keep. Then, click the

Apply accepted fraction lengths button ( ). The tool updates the
specified data types on the block dialog boxes and the SpecifiedDT column in
the Contents pane.

4 To verify the newly accepted scaling, set the Data type override parameter
back to Use local settings, and run the model. Looking at Contents pane of
the Fixed-Point Tool, you can see the following details:

• The SimMin and SimMax values of the Active run match the SimMin
and SimMax values from the floating-point Reference run.

• There are no longer any overflows.

• The SimDT does not match the SpecifiedDT for the Accumulator data
type of either Cumulative Sum block. This difference occurs because the
Cumulative Sum block always inherits its Signedness from the input
signal and only allows you to specify a Signedness of Auto. Therefore,
the SpecifiedDT for both Accumulator data types is fixdt([],32,17).
However, because the Signed Cumulative Sum block has a signed input
signal, the SimDT for the Accumulator parameter of that block is also
signed (fixdt(1,32,17)). Similarly, the SimDT for the Accumulator
parameter of the Unsigned Cumulative Sum block inherits its Signedness
from its input signal and thus is unsigned (fixdt(0,32,17)).
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Code Generation with System Objects
The following signal processing System objects support code generation in
MATLAB via the codegen function. To use the codegen function, you must
have a MATLAB Coder license. See “System Objects in MATLAB Code
Generation” for more information.

Supported Computer Vision System Toolbox System Objects

Object Description

Analysis & Enhancement

vision.BoundaryTracer Trace object boundaries in binary images.

vision.ContrastAdjuster Adjust image contrast by linear scaling.

vision.Deinterlacer Remove motion artifacts by deinterlacing input
video signal.

vision.EdgeDetector Find edges of objects in images.

vision.ForegroundDetector Detect foreground using Gaussian Mixture
Models. This object supports tunable properties
in code generation.

vision.HistogramBasedTracker Track object in video based on histogram. This
object supports tunable properties in code
generation.

vision.HistogramEqualizer Enhance contrast of images using histogram
equalization.

vision.TemplateMatcher Perform template matching by shifting
template over image.

Conversions

vision.Autothresholder Convert intensity image to binary image.

vision.ChromaResampler Downsample or upsample chrominance
components of images.

vision.ColorSpaceConverter Convert color information between color spaces.

vision.DemosaicInterpolator Demosaic Bayer’s format images.
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Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.GammaCorrector Apply or remove gamma correction from
images or video streams.

vision.ImageComplementer Compute complement of pixel values in binary,
intensity, or RGB images.

vision.ImageDataTypeConverter Convert and scale input image to specified
output data type.

Feature Detection, Extraction, and Matching

vision.CornerDetector Corner metric matrix and corner detector.
This object supports tunable properties in code
generation.

Filtering

vision.Convolver Compute 2-D discrete convolution of two input
matrices.

vision.ImageFilter Perform 2-D FIR filtering of input matrix.

vision.MedianFilter 2D median filtering.

Geometric Transformations

vision.GeometricRotator Rotate image by specified angle.

vision.GeometricScaler Enlarge or shrink image size.

vision.GeometricShearer Shift rows or columns of image by linearly
varying offset.

vision.GeometricTransformer Apply projective or affine transformation to
an image.

vision.GeometricTransformEstimator Estimate geometric transformation from
matching point pairs.
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Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.GeometricTranslator Translate image in two-dimensional plane
using displacement vector.

Morphological Operations

vision.ConnectedComponentLabeler Label and count the connected regions in a
binary image.

vision.MorphologicalClose Perform morphological closing on image.

vision.MorphologicalDilate Perform morphological dilation on an image.

vision.MorphologicalErode Perform morphological erosion on an image.

vision.MorphologicalOpen Perform morphological opening on an image.

Object Detection

vision.CascadeObjectDetector Detect objects using the Viola-Jones algorithm.

vision.HistogramBasedTracker Track object in video based on histogram. This
object supports tunable properties in code
generation.

vision.PointTracker Track points in video using
Kanade-Lucas-Tomasi (KLT) algorithm.

vision.PeopleDetector Detect upright people using HOG features.

Sinks

vision.VideoPlayer Send video data to computer screen. This
System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

vision.DeployableVideoPlayer Send video data to computer screen.

vision.VideoFileWriter Write video frames and audio samples to
multimedia file.

Sources
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Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.VideoFileReader Read video frames and audio samples from
compressed multimedia file.

Statistics

vision.Autocorrelator Compute 2-D autocorrelation of input matrix.

vision.BlobAnalysis Compute statistics for connected regions in a
binary image.

vision.Crosscorrelator Compute 2-D cross-correlation of two input
matrices.

vision.Histogram Generate histogram of each input matrix. This
object has no tunable properties.

vision.LocalMaximaFinder Find local maxima in matrices.

vision.Maximum Find maximum values in input or sequence of
inputs.

vision.Mean Find mean value of input or sequence of inputs.

vision.Median Find median values in an input.

vision.Minimum Find minimum values in input or sequence of
inputs.

vision.PSNR Compute peak signal-to-noise ratio (PSNR)
between images.

vision.StandardDeviation Find standard deviation of input or sequence
of inputs.

vision.Variance Find variance values in an input or sequence
of inputs.

Text & Graphics

vision.AlphaBlender Combine images, overlay images, or highlight
selected pixels.

vision.MarkerInserter Draw markers on output image.
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Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.ShapeInserter Draw rectangles, lines, polygons, or circles on
images.

vision.TextInserter Draw text on image or video stream.

Transforms

vision.DCT Compute 2-D discrete cosine transform.

vision.FFT Two-dimensional discrete Fourier transform.

vision.HoughLines Find Cartesian coordinates of lines that are
described by rho and theta pairs.

vision.HoughTransform Find lines in images via Hough transform.

vision.IDCT Compute 2-D inverse discrete cosine transform.

vision.IFFT Two–dimensional inverse discrete Fourier
transform.

vision.Pyramid Perform Gaussian pyramid decomposition.

Utilities

vision.ImagePadder Pad or crop input image along its rows,
columns, or both.
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Functions and Classes that Generate Code
The following Computer Vision System Toolbox functions and classes
support code generation in MATLAB. See“About MATLAB Coder” for more
information.

Function Description

binaryFeatures Object for storing binary feature vectors

cornerPoints Object for storing corner points

detectFASTFeatures Find corners using FAST algorithm

detectMSERFeatures Detect MSER features

detectSURFFeatures Detect SURF features

disparity Disparity map between stereo images

epipolarLine Compute epipolar lines for stereo images

estimateFundamentalMatrix Estimate fundamental matrix from corresponding
points in stereo image
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Function Description

estimateUncalibratedRectification Uncalibrated stereo rectification

extractFeatures Extract interest point descriptors

insertMarker Insert markers in image or video

insertShape Insert shapes in image or video

integralImage Compute integral image

isEpipoleInImage Determine whether image contains epipole

lineToBorderPoints Intersection points of lines in image and image
border

matchFeatures Find matching image features

MSERRegions Object for storing MSER regions
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Function Description

SURFPoints Object for storing SURF interest points

vision.KalmanFilter Kalman filter for object tracking
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Shared Library Dependencies
In general, the code you generate from Computer Vision System Toolbox
blocks is portable ANSI® C code. After you generate the code, you can deploy it
on another machine. For more information on how to do so, see “Relocate Code
to Another Development Environment” in the Simulink Coder documentation.

There are a few Computer Vision System Toolbox blocks that generate code
with limited portability. These blocks use precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices and file formats. To
find out which blocks use precompiled shared libraries, open the Computer
Vision System Toolbox Block Support Table. You can identify blocks that
use precompiled shared libraries by checking the footnotes listed in the
Code Generation Support column of the table. All blocks that use shared
libraries have the following footnote:

Host computer only. Excludes Real-Time Windows (RTWIN) target.

Simulink Coder provides functions to help you set up and manage the build
information for your models. For example, one of the Build Information
functions that Simulink Coder provides is getNonBuildFiles. This function
allows you to identify the shared libraries required by blocks in your model. If
your model contains any blocks that use precompiled shared libraries, you can
install those libraries on the target system. The folder that you install the
shared libraries in must be on the system path. The target system does not
need to have MATLAB installed, but it does need to be supported by MATLAB.
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Code Generation for Feature Matching and Registration
This example shows how to use the MATLAB Coder (TM) to generate C code
for a MATLAB file. The example explains how to modify the MATLAB code
used by the Automated Feature Matching example so that it is supported for
code generation. The example highlights some of the general requirements
for code generation, as well as some of the specific actions you must take to
prepare MATLAB code. Once the MATLAB code is ready for code generation,
you use the codegen command to generate a C-MEX function. Finally, to
verify results, the example shows you how to run the generated C-MEX
function in MATLAB and compare its output with the output of the MATLAB
code.

This example requires a MATLAB Coder (TM) license.

Set Up Your C Compiler

To run this example, you must have access to a C compiler and you must
configure it using ’mex -setup’ command. For more information, see Setting
Up Your C Compiler.

Decide Whether to Run under MATLAB or as a Standalone Application

Generated code can run inside the MATLAB environment as a C-MEX file,
or outside the MATLAB environment as a standalone executable or shared
utility to be linked with another standalone executable. For more details
about setting code generation options, see the config option of the codegen
command.

MEX Executables

This example generates a MEX executable to be run inside the MATLAB
environment.

Generating a C-MEX executable to run inside of MATLAB can also be a great
first step in a workflow that ultimately leads to standalone code. The inputs
and the outputs of the MEX-file are available for inspection in the MATLAB
environment, where visualization and other kinds of tools for verification and
analysis are readily available. You also have the choice of running individual
commands either as generated C code, or via the MATLAB engine. To run
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via MATLAB, declare relevant commands as extrinsic, which means that
the generated code will re-enter the MATLAB environment when it needs to
run that particular command. This is useful in cases where either an isolated
command does not yet have code generation support, or if you wish to embed
certain commands that do not generate code (such as plot command).

Standalone Executables

If deployment of code to another application is the goal, then a standalone
executable will be required. The first step is to configure MATLAB Coder
appropriately. For example, one way to tell it you want a standalone
executable is to create a MATLAB Coder project using the MATLAB Coder
IDE and configure that project to generate a module or an executable. You
can do so using the C/C++ static library or C/C++ executable options from the
Output type widget on the Build tab. This IDE is available by navigating as
follows:

- Click APPS tab - Scroll down to MATLAB Coder - In MATLAB Coder Project
dialog box, click OK

You can also define a config object using

a=coder.config('exe')

and pass that object to the coder command on the MATLAB command line.
When you create a standalone executable, you have to write your own main.c
(or main.cpp). Note that when you create a standalone executable, there
are no ready-made utilities for importing or exporting data between the
executable and the MATLAB environment. One of the options is to use
printf/fprintf to a file (in your handwritten main.c) and then import data into
MATLAB using ’load -ascii’ with your file. For an example, see the ’atoms
example’ under MATLAB Coder.

Break Out the Computational Part of the Algorithm into a Separate MATLAB
Function

MATLAB Coder requires MATLAB code to be in the form of a function in order
to generate C code. Note that it is generally not necessary to generate C code
for all of the MATLAB code in question. It is often desirable to separate the
code into the primary computational portion, from which C code generation
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is desired, and a harness or driver, which does not need to generate C code -
that code will run in MATLAB. The harness may contain visualization and
other verification aids that are not actually part of the system under test.
The code for the main algorithm of this example resides in a function called
visionRecovertformCodeGeneration_kernel.m

Once the code has been re-architected as described above, the code
must be modified so that it can be supported by the MATLAB Coder.
For example, we used estimateGeometricTransform in original example
visionrecovertform. Since this function does not support code generation,
we replaced this function with the corresponding System Object (TM)
vision.GeometricTransformEstimator. Furthermore, it is recommended that
you declare all the System Objects (TM) as persistent. This way you avoid the
reinitialization of the System Objects (TM) every time you call the function.
The usual pattern looks like this:

function y=my_function_with_system_objects_inside(u)
persistent geoTransformEstimator % Declare system objects as persistent

if isempty(geoTransformEstimator) % Construct system objects only once
% Create a System Object (TM) to compute Estimate geometric
% transformation.
geoTransformEstimator = vision.GeometricTransformEstimator

end

The above-mentioned pattern is used for all System Objects (TM) in
visionRecovertformCodeGeneration_kernel.m.

After setting up your system object initializations, you must also check that
the rest of the code uses capabilities that are supported by MATLAB coder.
For a list of supported commands, see MATLAB Coder documentation. For
a list of supported language constructs, see here.

It may be convenient to have limited visualization or some other capability
that is not supported by the MATLAB Coder present in the function
containing the main algorithm, which we hope to compile. In these cases, you
can declare these items ’extrinsic’ (using coder.extrinsic). Such capability is
only possible when you generate the C code into a MATLAB MEX-file, and
those functions will actually run in interpreted MATLAB mode. If generating
code for standalone use, extrinsic functions are either ignored or they generate
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an error, depending on whether the code generation engine determines that
they affect the results. Thus the code must be properly architected so that the
extrinsic functions do not materially affect the code in question if a standalone
executable is ultimately desired.

The original example uses showMatchedFeatures and imshowpair routines
for visualization of the results. These routines are extracted to a new function
featureMatchingVisualization_extrinsic.m. This function is declared extrinsic.

Run the Simulation

The kernel file visionRecovertformCodeGeneration_kernel.m has two input
parameters. The first input is the original image and the second input is the
image distorted by rotation and scale.

% define original image
original = imread('cameraman.tif');
% define distorted image by resizing and then rotating original image
scale = 0.7;
J = imresize(original, scale);
theta = 30;
distorted = imrotate(J, theta);
% call the generated mex file
[matchedOriginalLoc, matchedDistortedLoc,...

tform_matrix, inlierIdx, thetaRecovered, ...
scaleRecovered, recovered] = ...

visionRecovertformCodeGeneration_kernel(original, distorted);

scaleRecovered = 0.700860

thetaRecovered = 30.096533
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Compile the MATLAB Function Into a MEX File

Now use the codegen function to compile the
visionRecovertformCodeGeneration_kernel function into a MEX-file. You
can specify the ’-report’ option to generate a compilation report that shows
the original MATLAB code and the associated files that were created during
C code generation. You may want to create a temporary directory where
MATLAB Coder can create new files. Note that the generated MEX-file has
the same name as the original MATLAB file with _mex appended, unless you
use the -o option to specify the name of the executable.

MATLAB Coder requires that you specify the properties of all the input
parameters. One easy way to do this is to define the input properties by
example at the command-line using the -args option. For more information
see here. Since the inputs to visionRecovertformCodeGeneration_kernel.m
are a pair of images, we define both the inputs with the following properties:

• variable-sized at run-time with upper-bound [1000 1000]

• data type uint8
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NOTE: In this example, we detect and extract points corresponding to the
matching features between the original and the distorted images. Since the
number of matching points depends on image content, its size is variable in
nature and that’s why its size is unbounded. Since System Object (TM) does
not allow unbounded variables as its input, we need to specify a reasonable
upper bound for these variables’ sizes. In this example, we impose an upper
bound on size for two variables ’matchedDistorted’ and ’matchedOriginal’
using coder.varsize.

visiondemo_dir = pwd; % Store the current directory
mlcmexdir = [tempdir 'VisionRecovertformmexdir']; % Name of

% temporary directory
mkdir(mlcmexdir); % Create temporary directory
curdir = cd(mlcmexdir);
% Define the properties of input images
imageTypeAndSize = coder.typeof(uint8(0), [1000 1000],[true true]);
compileTimeInputs = {imageTypeAndSize, imageTypeAndSize};

codegen visionRecovertformCodeGeneration_kernel.m -report -args compileTime

Code generation successful: To view the report, open('C:\TEMP\R2013bd_689_5

Run the Generated Code

[matchedOriginalLocCG, matchedDistortedLocCG,...
tform_matrixCG, inlierIdxCG, thetaRecoveredCG, ...
scaleRecoveredCG, recoveredCG] = ...
visionRecovertformCodeGeneration_kernel_mex(original, distorted);

scaleRecovered = 0.700227

thetaRecovered = 30.002058
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Clean Up Generated Files

cd(curdir);
clear visionRecovertformCodeGeneration_kernel_mex;
cd ..;
rmdir(mlcmexdir,'s');
cd(visiondemo_dir);

Compare Codegen with MATLAB Code

Recovered scale and theta for both MATLAB and CODEGEN, as shown
above, are within reasonable tolerance. Furthermore, the matched points
are identical, as shown below:

isequal(matchedOriginalLocCG, matchedOriginalLoc)
isequal(matchedDistortedLocCG, matchedDistortedLoc)

ans =
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1

ans =

1

Appendix

The following helper functions are used in this example.

• featureMatchingVisualization_extrinsic.m

9-22



Accelerating Simulink Models

Accelerating Simulink Models
The Simulink software offer Accelerator and Rapid Accelerator simulation
modes that remove much of the computational overhead required by Simulink
models. These modes compile target code of your model. Through this method,
the Simulink environment can achieve substantial performance improvements
for larger models. The performance gains are tied to the size and complexity
of your model. Therefore, large models that contain Computer Vision System
Toolbox blocks run faster in Rapid Accelerator or Accelerator mode.

To change between Rapid Accelerator, Accelerator, and Normal mode, use
the drop-down list at the top of the model window.
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For more information on the accelerator modes in Simulink, see “Choosing
a Simulation Mode”.
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Define Basic System Objects
This example shows how to create a basic System object that increments a
number by one.

The class definition file contains the minimum elements required to define
a System object.

Create the Class Definition File

1 Create a MATLAB file named AddOne.m to contain the definition of your
System object.

edit AddOne.m

2 Subclass your object from matlab.System. Insert this line as the first line
of your file.

classdef AddOne < matlab.System

3 Add the stepImpl method, which contains the algorithm that runs when
users call the step method on your object. You always set the stepImpl
method access to protected because it is an internal method that users
do not directly call or run.

All methods, except static methods, expect the System object handle as the
first input argument. You can use any name for your System object handle.

In this example, instead of passing in the object handle, ~ is used to indicate
that the object handle is not used in the function. Using ~ instead of an
object handle prevents warnings about unused variables from occurring.

By default, the number of inputs and outputs are both one. To
change the number of inputs or outputs, use the getNumInputsImpl or
getNumOutputsImpl method, respectively.

methods (Access=protected)
function y = stepImpl(~, x)

y = x + 1;
end

end
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Note Instead of manually creating your class definition file, you can use
File > New > System Object to open a sample System object file in the
editor. You then can edit that file, using it as guideline, to create your own
System object.

Complete Class Definition File for Basic System Object

classdef AddOne < matlab.System
%ADDONE Compute an output value one greater than the input value

% All methods occur inside a methods declaration.
% The stepImpl method has protected access
methods (Access=protected)

function y = stepImpl(~,x)
y = x + 1;

end
end

end

See Also stepImpl | getNumInputsImpl | getNumOutputsImpl | matlab.System |

Related
Examples

• “Change Number of Step Inputs or Outputs” on page 10-5

Concepts • “System Design and Simulation in MATLAB”
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Change Number of Step Inputs or Outputs
This example shows how to specify two inputs and two outputs for the step
method.

If you do not specify the getNumInputsImpl and getNumOutputsImplmethods,
the object uses the default values of 1 input and 1 output. In this case, the
user must provide an input to the step method.

Note You should only use getNumInputsImpl or getNumOutputsImpl
methods to change the number of System object inputs or outputs. Do not
use any other handle objects within a System object to change the number
of inputs or outputs.

To specify no inputs, you must explicitly set the number of inputs to 0 using
the getNumInputsImpl method. To specify no outputs, you must explicitly
return 0 in the getNumOutputsImpl method.

You always set the getNumInputsImpl and getNumOutputsImpl methods
access to protected because they are internal methods that users do not
directly call or run.

Update the Algorithm for Multiple Inputs and Outputs

Update the stepImpl method to accept a second input and provide a second
output.

methods (Access=protected)
function [y1,y2] = stepImpl(~,x1,x2)

y1 = x1 + 1
y2 = x2 + 1;

end
end

Update the Associated Methods

Use getNumInputsImpl and getNumOutputsImpl to specify two inputs and
two outputs, respectively.
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methods (Access=protected)
function numIn = getNumInputsImpl(~)

numIn = 2;
end

function numOut = getNumOutputsImpl(~)
numOut = 2;

end
end

Complete Class Definition File with Multiple Inputs and Outputs

classdef AddOne < matlab.System
%ADDONE Compute output values two greater than the input values

% All methods occur inside a methods declaration.
% The stepImpl method has protected access
methods(Access=protected)

function [y1,y2] = stepImpl(~,x1,x2)
y1 = x1 + 1;
y2 = x2 + 1;

end

% getNumInputsImpl method calculates number of inputs
function num = getNumInputsImpl(~)

num = 2;
end

% getNumOutputsImpl method calculates number of outputs
function num = getNumOutputsImpl(~)

num = 2;
end

end
end

See Also getNumInputsImpl | getNumOutputsImpl |

Related
Examples

• “Validate Property and Input Values” on page 10-10
• “Define Basic System Objects” on page 10-3

10-6



Change Number of Step Inputs or Outputs

Concepts • “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Specify System Block Input and Output Names
This example shows how to specify the names of the input and output ports of
a System object–based block implemented using a MATLAB System block.

Define Input and Output Names

This example shows how to use getInputNamesImpl and getOutputNamesImpl
to specify the names of the input port as “source data” and the output port as
“count.”

If you do not specify the getInputNamesImpl and getOutputNamesImpl
methods, the object uses the stepImpl method input and output variable
names for the input and output port names, respectively. If the stepImpl
method uses varargin and varargout instead of variable names, the port
names default to empty strings.

methods (Access=protected)
function inputName = getInputNamesImpl(~)

inputName = 'source data';
end

function outputName = getOutputNamesImpl(~)
outputName = 'count';

end
end

Complete Class Definition File with Named Inputs and Outputs

classdef MyCounter < matlab.System

%MyCounter Count values above a threshold

properties
Threshold = 1

end
properties (DiscreteState)

Count
end
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methods
function obj = MyCounter(varargin)

setProperties(obj,nargin,varargin{:});
end

end

methods (Access=protected)
function setupImpl(obj, u)

obj.Count = 0;
end
function resetImpl(obj)

obj.Count = 0;
end
function y = stepImpl(obj, u)

if (u > obj.Threshold)
obj.Count = obj.Count + 1;

end
y = obj.Count;

end
function inputName = getInputNamesImpl(~)

inputName = 'source data';
end
function outputName = getOutputNamesImpl(~)

outputName = 'count';
end

end
end

See Also getNumInputsImpl | getNumOutputsImpl | getInputNamesImpl |
getOutputNamesImpl |

Related
Examples

• “Change Number of Step Inputs or Outputs” on page 10-5

Concepts • “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Validate Property and Input Values
This example shows how to verify that the user’s inputs and property values
are valid.

Validate Properties

This example shows how to validate the value of a single property using
set.PropertyName syntax. In this case, the PropertyName is Increment.

methods
% Validate the properties of the object
function set.Increment(obj,val)

if val >= 10
error('The increment value must be less than 10');

end
obj.Increment = val;

end
end

This example shows how to validate the value of two interdependent
properties using the validatePropertiesImpl method. In this case, the
UseIncrement property value must be true and the WrapValue property value
must be less than the Increment property value.

methods (Access=protected)
function validatePropertiesImpl(obj)

if obj.UseIncrement && obj.WrapValue < obj.Increment
error('Wrap value must be less than increment value');

end
end

end

Validate Inputs

This example shows how to validate that the first input is a numeric value.

methods (Access=protected)
function validateInputsImpl(~,x)

if ~isnumeric(x)
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error('Input must be numeric');
end

end
end

Complete Class Definition File with Property and Input Validation

classdef AddOne < matlab.System
%ADDONE Compute an output value by incrementing the input value

% All properties occur inside a properties declaration.
% These properties have public access (the default)
properties (Logical)

UseIncrement = true
end

properties (PositiveInteger)
Increment = 1
WrapValue = 10

end

methods
% Validate the properties of the object
function set.Increment(obj, val)

if val >= 10
error('The increment value must be less than 10');

end
obj.Increment = val;

end
end

methods (Access=protected)
function validatePropertiesImpl(obj)

if obj.UseIncrement && obj.WrapValue < obj.Increment
error('Wrap value must be less than increment value');

end
end

% Validate the inputs to the object
function validateInputsImpl(~,x)
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if ~isnumeric(x)
error('Input must be numeric');

end
end

function out = stepImpl(obj,in)
if obj.UseIncrement

out = in + obj.Increment;
else

out = in + 1;
end

end
end

end

Note All inputs default to variable-size inputs. See “Change Input
Complexity or Dimensions” for more information.

See Also validateInputsImpl | validatePropertiesImpl |

Related
Examples

• “Define Basic System Objects” on page 10-3

Concepts • “Methods Timing” on page 10-73
• “Property Set Methods”
• “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Initialize Properties and Setup One-Time Calculations
This example shows how to write code to initialize and set up a System object.

In this example, you allocate file resources by opening the file so the System
object can write to that file. You do these initialization tasks one time during
setup, rather than every time you call the step method.

Define Public Properties to Initialize

In this example, you define the public Filename property and specify the
value of that property as the nontunable string, default.bin. Users cannot
change nontunable properties after the setup method has been called. Refer
to the Methods Timing section for more information.

properties (Nontunable)
Filename ='default.bin'

end

Define Private Properties to Initialize

Users cannot access private properties directly, but only through methods of
the System object. In this example, you define the pFileID property as a
private property. You also define this property as hidden to indicate it is an
internal property that never displays to the user.

properties (Hidden,Access=private)
pFileID;

end

Define Setup

You use the setupImpl method to perform setup and initialization tasks. You
should include code in the setupImpl method that you want to execute one
time only. The setupImpl method is called once during the first call to the
step method. In this example, you allocate file resources by opening the
file for writing binary data.

methods
function setupImpl(obj,data)

obj.pFileID = fopen(obj.Filename,'wb');
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if obj.pFileID < 0
error('Opening the file failed');

end
end

end

Although not part of setup, you should close files when your code is done using
them. You use the releaseImpl method to release resources.

Complete Class Definition File with Initialization and Setup

classdef MyFile < matlab.System
%MyFile write numbers to a file

% These properties are nontunable. They cannot be changed
% after the setup or step method has been called.
properties (Nontunable)

Filename ='default.bin' % the name of the file to create
end

% These properties are private. Customers can only access
% these properties through methods on this object
properties (Hidden,Access=private)

pFileID; % The identifier of the file to open
end

methods (Access=protected)
% In setup allocate any resources, which in this case
% means opening the file.
function setupImpl(obj,data)

obj.pFileID = fopen(obj.Filename,'wb');
if obj.pFileID < 0

error('Opening the file failed');
end

end

% This System object writes the input to the file.
function stepImpl(obj,data)

fwrite(obj.pFileID,data);
end
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% Use release to close the file to prevent the
% file handle from being left open.
function releaseImpl(obj)

fclose(obj.pFileID);
end

% You indicate that no outputs are provided by returning
% zero from getNumOutputsImpl
function numOutputs = getNumOutputsImpl(~)

numOutputs = 0;
end

end
end

See Also setupImpl | releaseImpl | stepImpl |

Related
Examples

• “Release System Object Resources” on page 10-32
• “Define Property Attributes” on page 10-21

Concepts • “Methods Timing” on page 10-73
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Set Property Values at Construction Time
This example shows how to define a System object constructor and allow it to
accept name-value property pairs as input.

Set Properties to Use Name-Value Pair Input

Define the System object constructor, which is a method that has the same
name as the class (MyFile in this example). Within that method, you use
the setProperties method to make all public properties available for input
when the user constructs the object. nargin is a MATLAB function that
determines the number of input arguments. varargin indicates all of the
object’s public properties.

methods
function obj = MyFile(varargin)

setProperties(obj,nargin,varargin{:});
end

end

Complete Class Definition File with Constructor Setup

classdef MyFile < matlab.System
%MyFile write numbers to a file

% These properties are nontunable. They cannot be changed
% after the setup or step method has been called.
properties (Nontunable)

Filename ='default.bin' % the name of the file to create
Access = 'wb' % The file access string (write, binary)

end

% These properties are private. Customers can only access
% these properties through methods on this object
properties (Hidden,Access=private)

pFileID; % The identifier of the file to open
end

methods
% You call setProperties in the constructor to let
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% a user specify public properties of object as
% name-value pairs.
function obj = MyFile(varargin)

setProperties(obj,nargin,varargin{:});
end

end

methods (Access=protected)
% In setup allocate any resources, which in this case is
% opening the file.
function setupImpl(obj, ~)

obj.pFileID = fopen(obj.Filename,obj.Access);
if obj.pFileID < 0

error('Opening the file failed');
end

end

% This System object writes the input to the file.
function stepImpl(obj, data)

fwrite(obj.pFileID,data);
end

% Use release to close the file to prevent the
% file handle from being left open.
function releaseImpl(obj)

fclose(obj.pFileID);
end
% You indicate that no outputs are provided by returning
% zero from getNumOutputsImpl
function numOutputs = getNumOutputsImpl(~)

numOutputs = 0;
end

end
end

See Also narginsetProperties |
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Related
Examples

• “Define Property Attributes” on page 10-21
• “Release System Object Resources” on page 10-32
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Reset Algorithm State
This example shows how to reset an object state.

Reset Counter to Zero

pCount is an internal counter property of the System object obj. The user
calls the reset method, which calls the resetImpl method. In this example
, pCount resets to 0.

Note When resetting an object’s state, make sure you reset the size,
complexity, and data type correctly.

methods (Access=protected)
function resetImpl(obj)

obj.pCount = 0;
end

end

Complete Class Definition File with State Reset

classdef Counter < matlab.System
%Counter System object that increments a counter

properties(Access=private)
pCount

end

methods (Access=protected)
% In step, increment the counter and return
% its value as an output
function c = stepImpl(obj)

obj.pCount = obj.pCount + 1;
c = obj.pCount;

end

% Reset the counter to zero.
function resetImpl(obj)
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obj.pCount = 0;
end

% The step method takes no inputs
function numIn = getNumInputsImpl(~)

numIn = 0;
end

end
end
end

See “Methods Timing” on page 10-73 for more information.

See Also resetImpl |

Concepts • “Methods Timing” on page 10-73
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Define Property Attributes
This example shows how to specify property attributes.

Property attributes, which add details to a property, provide a layer of control
to your properties. In addition to the MATLAB property attributes, System
objects can use these three additional attributes—nontunable, logical,
and positiveInteger. To specify multiple attributes, separate them with
commas.

Specify Property as Nontunable

Use the nontunable attribute for a property when the algorithm depends on
the value being constant once data processing starts. Defining a property as
nontunable may improve the efficiency of your algorithm by removing the
need to check for or react to values that change. For code generation, defining
a property as nontunable allows the memory associated with that property
to be optimized. You should define all properties that affect the number of
input or output ports as nontunable.

System object users cannot change nontunable properties after the setup or
step method has been called. In this example, you define the InitialValue
property, and set its value to 0.

properties (Nontunable)
InitialValue = 0;

end

Specify Property as Logical

Logical properties have the value, true or false. System object users can
enter 1 or 0 or any value that can be converted to a logical. The value,
however, displays as true or false. You can use sparse logical values, but
they must be scalar values. In this example, the Increment property indicates
whether to increase the counter. By default, Increment is tunable property.
The following restrictions apply to a property with the Logical attribute,

• Cannot also be Dependent or PositiveInteger

• Default value must be true or false. You cannot use 1 or 0 as a default
value.
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properties (Logical)
Increment = true

end

Specify Property as Positive Integer

In this example, the private property pCount is constrained to accept only
real, positive integers. You cannot use sparse values. The following restriction
applies to a property with the PositiveInteger attribute,

• Cannot also be Dependent or Logical

properties (PositiveInteger)
Count

end

Specify Property as DiscreteState

If your algorithm uses properties that hold state, you can assign those
properties the DiscreteState attribute . Properties with this attribute
display their state values when users call getDiscreteStateImpl via the
getDiscreteState method. The following restrictions apply to a property
with the DiscreteState attribute,

• Numeric, logical, or fi value, but not a scaled double fi value

• Does not have any of these attributes: Nontunable, Dependent, Abstract,
Constant, or Transient.

• No default value

• Not publicly settable

• GetAccess=Public by default

• Value set only using the setupImpl method or when the System object is
locked during resetImpl or stepImpl

In this example, you define the Count property.

properties (DiscreteState)
Count;
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end

Complete Class Definition File with Property Attributes

classdef Counter < matlab.System
%Counter Increment a counter starting at an initial value

% These properties are nontunable. They cannot be changed
% after the setup or step method has been called.
properties (Nontunable)

% The inital value of the counter
InitialValue = 0

end

properties (Logical)
% Whether to increment the counter
Increment = true

end

% Count state variable
properties (DiscreteState, PositiveInteger)

Count
end

methods (Access=protected)
% In step, increment the counter and return its value
% as an output
function c = stepImpl(obj)

if obj.Increment
obj.Count = obj.Count + 1;

end
c = obj.Count;

end
% Setup the Count state variable
function setupImpl(obj)

obj.Count = 0;
end
% Reset the counter to zero.
function resetImpl(obj)

obj.Count = obj.InitialValue;
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end
% The step method takes no inputs
function numIn = getNumInputsImpl(~)

numIn = 0;
end

end
end

Concepts • “Class Attributes”
• “Property Attributes”
• “What You Cannot Change While Your System Is Running”
• “Methods Timing” on page 10-73
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Hide Inactive Properties
This example shows how to hide the display of a property that is not active
for a particular object configuration.

Hide an inactive property

You use the isInactivePropertyImpl method to hide a property from
displaying. If the isInactiveProperty method returns true to the property
you pass in, then that property does not display.

methods (Access=protected)
function flag = isInactivePropertyImpl(obj,propertyName)

if strcmp(propertyName,'InitialValue')
flag = obj.UseRandomInitialValue;

else
flag = false;

end
end

end

Complete Class Definition File with Hidden Inactive Property

classdef Counter < matlab.System
%Counter Increment a counter

% These properties are nontunable. They cannot be changed
% after the setup or step method has been called.
properties (Nontunable)

% Allow the user to set the initial value
UseRandomInitialValue = true
InitialValue = 0

end

% The private count variable, which is tunable by default
properties (Access=private)

pCount
end

methods (Access=protected)
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% In step, increment the counter and return its value
% as an output
function c = stepImpl(obj)

obj.pCount = obj.pCount + 1;
c = obj.pCount;

end

%Reset the counter to either a random value or the initial
% value.
function resetImpl(obj)

if obj.UseRandomInitialValue
obj.pCount = rand();

else
obj.pCount = obj.InitialValue;

end
end

% The step method takes no inputs
function numIn = getNumInputsImpl(~)

numIn = 0;
end

% This method controls visibility of the object's properties
function flag = isInactivePropertyImpl(obj,propertyName)

if strcmp(propertyName,'InitialValue')
flag = obj.UseRandomInitialValue;

else
flag = false;

end
end

end
end

See Also isInactivePropertyImpl |
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Limit Property Values to Finite String Set
This example shows how to limit a property to accept only a finite set of
string values.

Specify a Set of Valid String Values

String sets use two related properties. You first specify the user-visible
property name and default string value. Then, you specify the associated
hidden property by appending “Set” to the property name. You must use
a capital “S” in “Set.”

In the “Set” property, you specify the valid string values as a cell array of the
matlab.system.Stringset class. This example uses Color and ColorSet
as the associated properties.

properties
Color = 'blue'

end

properties (Hidden,Transient)
ColorSet = matlab.system.StringSet({'red','blue','green'});

end

Complete Class Definition File with String Set

classdef Whiteboard < matlab.System
%Whiteboard Draw lines on a figure window
%
% This System object illustrates the use of StringSets

properties
Color = 'blue'

end

properties (Hidden,Transient)
% Let them choose a color
ColorSet = matlab.system.StringSet({'red','blue','green'});

end
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methods(Access = protected)
function stepImpl(obj)

h = Whiteboard.getWhiteboard();
plot(h, ...

randn([2,1]),randn([2,1]), ...
'Color',obj.Color(1));

end
function releaseImpl(obj)

cla(Whiteboard.getWhiteboard());
hold('on');

end
function n = getNumInputsImpl(~)

n = 0;
end
function n = getNumOutputsImpl(~)

n = 0;
end

end

methods (Static)
function a = getWhiteboard()

h = findobj('tag','whiteboard');
if isempty(h)

h = figure('tag','whiteboard');
hold('on');

end
a = gca;

end
end

end

String Set System Object Example

%%
% Each call to step draws lines on a whiteboard

%% Construct the System object
hGreenInk = Whiteboard;
hBlueInk = Whiteboard;
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% Change the color
% Note: Press tab after typing the first single quote to
% display all enumerated values.
hGreenInk.Color = 'green';
hBlueInk.Color = 'blue';

% Take a few steps
for i=1:3

hGreenInk.step();
hBlueInk.step();

end

%% Clear the whiteboard
hBlueInk.release();

%% Display System object used in this example
type('Whiteboard.m');

See Also matlab.system.StringSet |
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Process Tuned Properties
This example shows how to specify the action to take when a tunable property
value changes during simulation.

The processTunedPropertiesImpl method is useful for managing actions to
prevent duplication. In many cases, changing one of multiple interdependent
properties causes an action. With the processTunedPropertiesImpl method,
you can control when that action is taken so it is not repeated unnecessarily.

Control When a Lookup Table Is Generated

This example of processTunedPropertiesImpl causes the pLookupTable to
be regenerated when either the NumNotes or MiddleC property changes.

methods (Access = protected)
function processTunedPropertiesImpl(obj)

obj.pLookupTable = obj.MiddleC * ...
(1+log(1:obj.NumNotes)/log(12));

end
end

Complete Class Definition File with Tuned Property Processing

classdef TuningFork < matlab.System
%TuningFork Illustrate the processing of tuned parameters
%

properties
MiddleC = 440
NumNotes = 12

end

properties (Access=private)
pLookupTable

end

methods(Access=protected)
function resetImpl(obj)

obj.MiddleC = 440;
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obj.pLookupTable = obj.MiddleC * ...
(1+log(1:obj.NumNotes)/log(12));

end

function hz = stepImpl(obj,noteShift)
% A noteShift value of 1 corresponds to obj.MiddleC
hz = obj.pLookupTable(noteShift);

end

function processTunedPropertiesImpl(obj)
% Generate a lookup table of note frequencies
obj.pLookupTable = obj.MiddleC * ...

(1+log(1:obj.NumNotes)/log(12));
end

end
end

See Also processTunedPropertiesImpl |
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Release System Object Resources
This example shows how to release resources allocated and used by the
System object. These resources include allocated memory, files used for
reading or writing, etc.

Release Memory by Clearing the Object

This method allows you to clear the axes on the Whiteboard figure window
while keeping the figure open.

methods
function releaseImpl(obj)

cla(Whiteboard.getWhiteboard());
hold('on');

end
end

Complete Class Definition File with Released Resources

classdef Whiteboard < matlab.System
%Whiteboard Draw lines on a figure window
%
% This System object shows the use of StringSets
%

properties
Color = 'blue'

end

properties (Hidden)
% Let user choose a color
ColorSet = matlab.system.StringSet({'red','blue','green'});

end

methods(Access=protected)
function stepImpl(obj)

h = Whiteboard.getWhiteboard();
plot(h, ...

randn([2,1]), randn([2,1]), ...
'Color',obj.Color(1));
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end

function releaseImpl(obj)
cla(Whiteboard.getWhiteboard());
hold('on');

end

function n = getNumInputsImpl(~)
n = 0;

end
function n = getNumOutputsImpl(~)

n = 0;
end

end

methods (Static)
function a = getWhiteboard()

h = findobj('tag','whiteboard');
if isempty(h)

h = figure('tag','whiteboard');
hold('on');

end
a = gca;

end
end

end

See Also releaseImpl |

Related
Examples

• “Initialize Properties and Setup One-Time Calculations” on page 10-13
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Define Composite System Objects
This example shows how to define System objects that include other System
objects.

This example defines a filter System object from an FIR System object and
an IIR System object.

Store System Objects in Properties

To define a System object from other System objects, store those objects in
your class definition file as properties. In this example, FIR and IIR are
separate System objects defined in their own class-definition files. You use
those two objects to calculate the pFir and pIir property values.

properties (Nontunable, Access = private)
pFir % store the FIR filter
pIir % store the IIR filter

end

methods
function obj = Filter(varargin)

setProperties(obj, nargin, varargin{:});
obj.pFir = FIR(obj.zero);
obj.pIir = IIR(obj.pole);

end
end

Complete Class Definition File of Composite System Object

classdef Filter < matlab.System
% Filter System object with a single pole and a single zero
%
% This System object illustrates composition by
% composing an instance of itself.
%

properties (Nontunable)
zero = 0.01
pole = 0.5
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end

properties (Nontunable,Access=private)
pZero % store the FIR filter
pPole % store the IIR filter

end

methods
function obj = Filter(varargin)

setProperties(obj,nargin, varargin{:});
% Create instances of FIR and IIR as
% private properties
obj.pZero = Zero(obj.zero);
obj.pPole = Pole(obj.pole);

end
end

methods (Access=protected)
function setupImpl(obj,x)

setup(obj.pZero,x);
setup(obj.pPole,x);

end

function resetImpl(obj)
reset(obj.pZero);
reset(obj.pPole);

end

function y = stepImpl(obj,x)
y = step(obj.pZero,x) + step(obj.pPole,x);

end
function releaseImpl(obj)

release(obj.pZero);
release(obj.pPole);

end
end

end

Class Definition File for IIR Component of Filter
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classdef Pole < matlab.System

properties
Den = 1

end

properties (Access=private)
tap = 0

end

methods
function obj = Pole(varargin)

setProperties(obj,nargin,varargin{:},'Den');
end

end

methods (Access=protected)
function y = stepImpl(obj,x)

y = x + obj.tap * obj.Den;
obj.tap = y;

end
end

end

Class Definition File for FIR Component of Filter

classdef Zero < matlab.System

properties
Num = 1

end

properties (Access=private)
tap = 0

end

methods
function obj = Zero(varargin)

setProperties(obj, nargin,varargin{:},'Num');
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end
end

methods (Access=protected)
function y = stepImpl(obj,x)

y = x + obj.tap * obj.Num;
obj.tap = x;

end
end

end

See Also nargin
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Define Finite Source Objects
This example shows how to define a System object that performs a specific
number of steps or specific number of reads from a file.

Use the FiniteSource Class and Specify End of the Source

1 Subclass from finite source class.

classdef RunTwice < matlab.System & ...
matlab.system.mixin.FiniteSource

2 Specify the end of the source with the isDoneImplmethod. In this example,
the source has two iterations.

methods (Access = protected)
function bDone = isDoneImpl(obj)

bDone = obj.NumSteps==2
end

Complete Class Definition File with Finite Source

classdef RunTwice < matlab.System & ...
matlab.system.mixin.FiniteSource

%RunTwice System object that runs exactly two times
%
properties (Access=private)

NumSteps
end

methods (Access=protected)
function resetImpl(obj)

obj.NumSteps = 0;
end

function y = stepImpl(obj)
if ~obj.isDone()

obj.NumSteps = obj.NumSteps + 1;
y = obj.NumSteps;

else
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y = 0;
end

end

function bDone = isDoneImpl(obj)
bDone = obj.NumSteps==2;

end
end

methods (Access=protected)
function n = getNumInputsImpl(~)

n = 0;
end
function n = getNumOutputsImpl(~)

n = 1;
end

end

end

See Also matlab.system.mixin.FiniteSource |

Concepts • “What Are Mixin Classes?” on page 10-77
• “Subclassing Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Save System Object
This example shows how to save a System object.

Save System Object and Child Object

Define a saveObjectImpl method to specify that more than just public
properties should be saved when the user saves a System object. Within this
method, use the default saveObjectImpl@matlab.System to save public
properties to the struct, s. Use the saveObject method to save child objects.
Save protected and dependent properties, and finally, if the object is locked,
save the object’s state.

methods(Access=protected)
function s = saveObjectImpl(obj)

s = saveObjectImpl@matlab.System(obj);
s.child = matlab.System.saveObject(obj.child);
s.protected = obj.protected;
s.pdependentprop = obj.pdependentprop;
if isLocked(obj)

s.state = obj.state;
end

end
end

Complete Class Definition File with Save and Load

classdef MySaveLoader < matlab.System

properties (Access=private)
child
pdependentprop

end

properties (Access=protected)
protected = rand;

end

properties (DiscreteState=true)
state
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end

properties (Dependent)
dependentprop

end

methods
function obj = MySaveLoader(varargin)

obj@matlab.System();
setProperties(obj, nargin, varargin{:});

end
end

methods(Access = protected)
function setupImpl(obj, varargin)

obj.state = 42;
end

function out = stepImpl(obj, in)
obj.state = in;
out = obj.state;

end
end

% Serialization
methods(Access=protected)

function s = saveObjectImpl(obj)
% Call the base class method
s = saveObjectImpl@matlab.System(obj);

% Save the child System objects
s.child = matlab.System.saveObject(obj.child);

% Save the protected & private properties
s.protected = obj.protected;
s.pdependentprop = obj.pdependentprop;

% Save the state only if object locked
if isLocked(obj)
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s.state = obj.state;
end

end

function loadObjectImpl(obj,s,wasLocked)
% Load child System objects
obj.child = matlab.System.loadObject(s.child);

% Load protected and private properties
obj.protected = s.protected;
obj.pdependentprop = s.pdependentprop;

% Load the state only if object locked
if wasLocked

obj.state = s.state;
end

% Call base class method to load public properties
loadObjectImpl@matlab.System(obj,s,wasLocked);

end
end

end

See Also saveObjectImpl | loadObjectImpl |

Related
Examples

• “Load System Object” on page 10-43
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Load System Object
This example shows how to load a System object.

Load System Object and Child Object

Define a loadObjectImpl method to load a previously saved System object.
Within this method, use the matlab.System.loadObject to assign the child
object struct data to the associated object property. Assign protected and
dependent property data to the associated object properties. If the object was
locked when it was saved, assign the object’s state to the associated property.
Load the saved public properties with the loadObjectImpl method.

methods(Access=protected)
function loadObjectImpl(obj,s,wasLocked)

obj.child = matlab.System.loadObject(s.child);
obj.protected = s.protected;
obj.pdependentprop = s.pdependentprop;
if wasLocked

obj.state = s.state;
end
loadObjectImpl@matlab.System(obj,s,wasLocked);

end
end

end

Complete Class Definition File with Save and Load

classdef MySaveLoader < matlab.System

properties (Access=private)
child
pdependentprop

end

properties (Access=protected)
protected = rand;

end

properties (DiscreteState=true)
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state
end

properties (Dependent)
dependentprop

end

methods
function obj = MySaveLoader(varargin)

obj@matlab.System();
setProperties(obj, nargin, varargin{:});

end
end

methods(Access = protected)
function setupImpl(obj,varargin)

obj.state = 42;
end

function out = stepImpl(obj,in)
obj.state = in;
out = obj.state;

end
end

% Serialization
methods(Access=protected)

function s = saveObjectImpl(obj)
% Call the base class method
s = saveObjectImpl@matlab.System(obj);

% Save the child System objects
s.child = matlab.System.saveObject(obj.child);

% Save the protected & private properties
s.protected = obj.protected;
s.pdependentprop = obj.pdependentprop;

% Save the state only if object locked
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if isLocked(obj)
s.state = obj.state;

end
end

function loadObjectImpl(obj,s,wasLocked)
% Load child System objects
obj.child = matlab.System.loadObject(s.child);

% Load protected and private properties
obj.protected = s.protected;
obj.pdependentprop = s.pdependentprop;

% Load the state only if object locked
if wasLocked

obj.state = s.state;
end

% Call base class method to load public properties
loadObjectImpl@matlab.System(obj,s,wasLocked);

end
end

end

See Also saveObjectImpl | loadObjectImpl |

Related
Examples

• “Save System Object” on page 10-40
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Clone System Object
This example shows how to clone a System object.

Clone System Object

You can define your own clone method, which is useful for copying objects
without saving their state. The default cloneImpl method copies both a
System object™ and its current state. If an object is locked, the default
cloneImpl creates a cloned object that is also locked. An example of when you
may want to write your own clone method is for cloning objects that handle
resources. These objects cannot allocate resources twice and you would not
want to save their states. To write your clone method, use the saveObject
and loadObject methods to perform the clone within the cloneImpl method.

methods(Access=protected)
function obj2 = cloneImpl(obj1)

s = saveObject (obj1);
obj2 = loadObject(s);

end
end

Complete Class Definition File with Clone

classdef PassThrough < matlab.System
methods (Access=protected)

function y = stepImpl(~,u)
y = u;

end
function obj2 = cloneImpl(obj1)

s = matlab.System.saveObject(obj1);
obj2 = matlab.System.loadObject(s);

end
end

end

See Also cloneImpl | saveObjectImpl | loadObjectImpl |

10-46



Define System Block Icon

Define System Block Icon
This example shows how to define the block icon of a System object–based
block implemented using a MATLAB System block.

Use the CustomIcon Class and Define the Icon

1 Subclass from custom icon class.

classdef MyCounter < matlab.System & ...
matlab.system.mixin.CustomIcon

2 Use getIconImpl to specify the block icon as New Counter with a line
break (\n) between the two words.

methods (Access=protected)
function icon = getIconImpl(~)

icon = sprintf('New\nCounter');
end

end

Complete Class Definition File with Defined Icon

classdef MyCounter < matlab.System & ...
matlab.system.mixin.CustomIcon

% MyCounter Count values above a threshold

properties
Threshold = 1

end
properties (DiscreteState)

Count
end

methods
function obj = MyCounter(varargin)

setProperties(obj,nargin,varargin{:});
end

end
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methods (Access=protected)
function setupImpl(obj, u)

obj.Count = 0;
end
function resetImpl(obj)

obj.Count = 0;
end
function y = stepImpl(obj, u)

if (u > obj.Threshold)
obj.Count = obj.Count + 1;

end
y = obj.Count;

end
function icon = getIconImpl(~)

icon = sprintf('New\nCounter');
end

end
end

See Also getIconImpl | matlab.system.mixin.CustomIcon |

Concepts • “What Are Mixin Classes?” on page 10-77
• “Subclassing Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Add Header to System Block Dialog
This example shows how to add a header panel to a System object–based
block implemented using a MATLAB System block.

Define Header Title and Text

This example shows how to use getHeaderImpl to specify a panel title and
text for the MyCounter System object.

If you do not specify the getHeaderImpl, the block does not display any title
or text for the panel.

You always set the getHeaderImpl method access to protected because it is
an internal method that end users do not directly call or run.

methods(Static,Access=protected)
function header = getHeaderImpl

header = matlab.system.display.Header('MyCounter',...
'Title','My Enhanced Counter');

end
end

Complete Class Definition File with Defined Header

classdef MyCounter < matlab.System

%MyCounter Count values

properties
Threshold = 1

end
properties (DiscreteState)

Count
end

methods(Static,Access=protected)
function header = getHeaderImpl

header = matlab.system.display.Header('MyCounter',...
'Title','My Enhanced Counter',...
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'Text', 'This counter is an enhanced version.');
end

end

methods (Access=protected)
function setupImpl(obj,u)

obj.Count = 0;
end
function y = stepImpl(obj,u)

if (u > obj.Threshold)
obj.Count = obj.Count + 1;

end
y = obj.Count;

end
function resetImpl(obj)

obj.Count = 0;
end

function N = getNumInputsImpl(obj)
N = 1;

end
function N = getNumOutputsImpl(obj)

N = 1;
end

end
end

See Also getHeaderImpl | matlab.system.display.Header |
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Add Property Groups to System Object and Block Dialog
This example shows how to define property sections and section groups for
System object display. The sections and section groups display as panels and
tabs, respectively, in the MATLAB System block dialog.

Define Section of Properties

This example shows how to use matlab.system.display.Section and
getPropertyGroupsImpl to define two property group sections by specifying
their titles and property lists.

If you do not specify a property in getPropertyGroupsImpl, the block does
not display that property.

methods(Static,Access=protected)
function groups = getPropertyGroupsImpl

valueGroup = matlab.system.display.Section(...
'Title','Value parameters',...
'PropertyList',{'StartValue','EndValue'});

thresholdGroup = matlab.system.display.Section(...
'Title','Threshold parameters',...
'PropertyList',{'Threshold','UseThreshold'});

groups = [valueGroup,thresholdGroup];
end

end

Define Group of Sections

This example shows how to use matlab.system.display.SectionGroup,
matlab.system.display.Section, and getPropertyGroupsImpl to define
two tabs, each containing specific properties.

methods(Static,Access=protected)
function groups = getPropertyGroupsImpl

upperGroup = matlab.system.display.Section(...
'Title', 'Upper threshold', ...
'PropertyList',{'UpperThreshold'});

lowerGroup = matlab.system.display.Section(...
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'Title','Lower threshold', ...
'PropertyList',{'UseLowerThreshold','LowerThreshold'});

thresholdGroup = matlab.system.display.SectionGroup(...
'Title', 'Parameters', ...
'Sections', [upperGroup,lowerGroup]);

valuesGroup = matlab.system.display.SectionGroup(...
'Title', 'Initial conditions', ...
'PropertyList', {'StartValue'});

groups = [thresholdGroup, valuesGroup];
end

end

Complete Class Definition File with Property Group and Separate Tab

classdef EnhancedCounter < matlab.System
% EnhancedCounter Count values considering thresholds

properties
UpperThreshold = 1;
LowerThreshold = 0;

end

properties(Nontunable)
StartValue = 0;

end

properties(Logical,Nontunable)
% Count values less than lower threshold
UseLowerThreshold = true;

end

properties (DiscreteState)
Count;

end

methods(Static,Access=protected)
function groups = getPropertyGroupsImpl
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upperGroup = matlab.system.display.Section(...
'Title', 'Upper threshold', ...
'PropertyList',{'UpperThreshold'});

lowerGroup = matlab.system.display.Section(...
'Title','Lower threshold', ...
'PropertyList',{'UseLowerThreshold','LowerThreshold'});

thresholdGroup = matlab.system.display.SectionGroup(...
'Title', 'Parameters', ...
'Sections', [upperGroup,lowerGroup]);

valuesGroup = matlab.system.display.SectionGroup(...
'Title', 'Initial conditions', ...
'PropertyList', {'StartValue'});

groups = [thresholdGroup, valuesGroup];
end

end

methods(Access=protected)
function setupImpl(obj, ~, ~)

obj.Count = obj.StartValue;
end

function y = stepImpl(obj,u)
if obj.UseLowerThreshold

if (u > obj.UpperThreshold) || ...
(u < obj.LowerThreshold)

obj.Count = obj.Count + 1;
end

else
if (u > obj.UpperThreshold)

obj.Count = obj.Count + 1;
end

end
y = obj.Count;

end
function resetImpl(obj)

obj.Count = obj.StartValue;
end
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function flag = isInactivePropertyImpl(obj, prop)
flag = false;
switch prop

case 'LowerThreshold'
flag = ~obj.UseLowerThreshold;

end
end

end
end

See Also getPropertyGroupsImpl | matlab.system.display.Section |
matlab.system.display.SectionGroup |

Concepts • “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Set Output Size
This example shows how to specify the size of a System object output using the
getOutputSizeImpl method. This method indicates the output size when the
size cannot be inferred from the inputs during Simulink model compilation.

Subclass from the Propagates Mixin Class

To use the getOutputSizeImpl method, you must subclass from both the
matlab.System base class and the Propagates mixin class.

classdef CounterReset < matlab.System & ...
matlab.system.mixin.Propagates

Specify Output Size

Use the getOutputSizeImpl method to specify the output size.

methods (Access=protected)
function sizeout = getOutputSizeImpl(~)

sizeout = [1 1];
end

end

Complete Class Definition File with Specified Output Size

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates
%CounterReset Count values above a threshold

properties
Threshold = 1

end

properties (DiscreteState)
Count

end

methods (Access=protected)
function setupImpl(obj,~,~)

obj.Count = 0;
end
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function y = stepImpl(obj,u1,u2)
% Add to count if u1 is above threshold
% Reset if u2 is true
if (u2)

obj.Count = 0;
elseif (u1 > obj.Threshold)

obj.Count = obj.Count + 1;
end
y = obj.Count;

end

function resetImpl(obj)
obj.Count = 0;

end

function N = getNumInputsImpl(~)
N = 2;

end

function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)
if strcmp(name,'Count')

sz = [1 1];
dt = 'double';
cp = false;

else
error(['Error: Incorrect State Name: 'name'.']);

end
end
function dataout = getOutputDataTypeImpl(~)

dataout = 'double';
end
function sizeout = getOutputSizeImpl(~)

sizeout = [1 1];
end
function cplxout = isOutputComplexImpl(~)

cplxout = false;
end
function fixedout = isOutputFixedSizeImpl(~)

fixedout = true;
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end
end

end

See Also matlab.system.mixin.Propagates | getOutputSizeImpl |

Concepts • “What Are Mixin Classes?” on page 10-77
• “Subclassing Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Set Output Data Type
This example shows how to specify the data type of a System object output
using the getOutputDataTypeImpl method. This method indicates the data
type of the output when the data type cannot be inferred from the inputs
during Simulink model compilation.

Subclass from the Propagates Mixin Class

To use the getOutputDataTypeImpl method, you must subclass from the
Propagates mixin class.

classdef CounterReset < matlab.System & ...
matlab.system.mixin.Propagates

Specify Output Data Type

Use the getOutputDataTypeImpl method to specify the output data type
as a double.

methods (Access=protected)
function dataout = getOutputDataTypeImpl(~)

dataout = 'double';
end

end

Complete Class Definition File with Specified Output Data Type

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates
%CounterReset Count values above a threshold

properties
Threshold = 1

end

properties (DiscreteState)
Count

end

methods (Access=protected)
function setupImpl(obj,~,~)
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obj.Count = 0;
end

function resetImpl(obj)
obj.Count = 0;

end

function y = stepImpl(obj,u1,u2)
% Add to count if u1 is above threshold
% Reset if u2 is true
if (u2)

obj.Count = 0;
elseif (u1 > obj.Threshold)

obj.Count = obj.Count + 1;
end
y = obj.Count;

end

function N = getNumInputsImpl(~)
N = 2;

end

function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)
if strcmp(name,'Count')

sz = [1 1];
dt = 'double';
cp = false;

else
error(['Error: Incorrect State Name: 'name'.']);

end
end
function dataout = getOutputDataTypeImpl(~)

dataout = 'double';
end
function sizeout = getOutputSizeImpl(~)

sizeout = [1 1];
end
function cplxout = isOutputComplexImpl(~)

cplxout = false;
end
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function fixedout = isOutputFixedSizeImpl(~)
fixedout = true;

end
end

end

See Also matlab.system.mixin.Propagates | getOutputDataTypeImpl |

Concepts • “What Are Mixin Classes?” on page 10-77
• “Subclassing Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Set Output Complexity
This example shows how to specify whether a System object output is a
complex or real value. You use the isOutputComplexImpl method when the
output complexity cannot be inferred from the inputs during Simulink model
compilation.

Subclass from the Propagates Mixin Class

To use the isOutputComplexImpl method, you must subclass from both the
matlab.System base class and the Propagates mixin class.

classdef CounterReset < matlab.System & ...
matlab.system.mixin.Propagates

Specify Output Complexity

Use the isOutputComplexImpl method to specify that the output is real.

methods (Access=protected)
function cplxout = isOutputComplexImpl(~)

cplxout = false;
end

end

Complete Class Definition File with Specified Complexity

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates
%CounterReset Count values above a threshold

properties
Threshold = 1

end

properties (DiscreteState)
Count

end

methods (Access=protected)
function setupImpl(obj,~,~)

obj.Count = 0;
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end

function resetImpl(obj)
obj.Count = 0;

end

function y = stepImpl(obj,u1,u2)
% Add to count if u1 is above threshold
% Reset if u2 is true
if (u2)

obj.Count = 0;
elseif (u1 > obj.Threshold)

obj.Count = obj.Count + 1;
end
y = obj.Count;

end

function N = getNumInputsImpl(~)
N = 2;

end

function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)
if strcmp(name,'Count')

sz = [1 1];
dt = 'double';
cp = false;

else
error(['Error: Incorrect State Name: 'name'.']);

end
end
function dataout = getOutputDataTypeImpl(~)

dataout = 'double';
end
function sizeout = getOutputSizeImpl(~)

sizeout = [1 1];
end
function cplxout = isOutputComplexImpl(~)

cplxout = false;
end
function fixedout = isOutputFixedSizeImpl(~)
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fixedout = true;
end

end
end

See Also matlab.system.mixin.Propagates | isOutputComplexImpl |

Concepts • “What Are Mixin Classes?” on page 10-77
• “Subclassing Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Specify Whether Output Is Fixed- or Variable-Size
This example shows how to specify whether a System object output has fixed-
or variable-size output. . You use the isOutputFixedSizeImpl method when
the output type cannot be inferred from the inputs during Simulink model
compilation.

Subclass from the Propagates Mixin Class

To use the isOutputFixedSizeImpl method, you must subclass from both the
matlab.System base class and the Propagates mixin class.

classdef CounterReset < matlab.System & ...
matlab.system.mixin.Propagates

Specify Output as Fixed Size

Use the isOutputFixedSizeImpl method to specify that the output is fixed
size.

methods (Access=protected)
function fixedout = isOutputFixedSizeImpl(~)

fixedout = true;
end

end

Complete Class Definition File with Specified Output Data Type

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates
%CounterReset Count values above a threshold

properties
Threshold = 1

end

properties (DiscreteState)
Count

end

methods (Access=protected)
function setupImpl(obj,~,~)
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obj.Count = 0;
end

function resetImpl(obj)
obj.Count = 0;

end

function y = stepImpl(obj,u1,u2)
% Add to count if u1 is above threshold
% Reset if u2 is true
if (u2)

obj.Count = 0;
elseif (u1 > obj.Threshold)

obj.Count = obj.Count + 1;
end
y = obj.Count;

end

function N = getNumInputsImpl(~)
N = 2;

end

function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)
if strcmp(name,'Count')

sz = [1 1];
dt = 'double';
cp = false;

else
error(['Error: Incorrect State Name: 'name'.']);

end
end
function dataout = getOutputDataTypeImpl(~)

dataout = 'double';
end
function sizeout = getOutputSizeImpl(~)

sizeout = [1 1];
end
function cplxout = isOutputComplexImpl(~)

cplxout = false;
end

10-65



10 Define New System Objects

function fixedout = isOutputFixedSizeImpl(~)
fixedout = true;

end
end

end

See Also matlab.system.mixin.Propagates | isOutputFixedSizeImpl |

Concepts • “What Are Mixin Classes?” on page 10-77
• “Subclassing Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Specify Discrete State Output Specification
This example shows how to specify the size, data type, and
complexity of a discrete state property. You must use the
getDiscreteStateSpecificationImpl method when your System object has
a property that is defined with the DiscreteState attribute. This method
indicates the output specifications when those specifications cannot be
inferred during Simulink model compilation.

Subclass from the Propagates Mixin Class

To use the getDiscreteStateSpecificationImpl method, you must subclass
from both the matlab.System base class and from the Propagatesmixin class.

classdef CounterReset < matlab.System & ...
matlab.system.mixin.Propagates

Specify Discrete State Output Specification

Use the getDiscreteStateSpecificationImpl method to specify the size
and data type. Also specify the complexity of a discrete state property, which
is used in the counter reset example.

methods (Access=protected)
function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)

sz = [1 1];
dt = 'double';
cp = false;

end
end

Complete Class Definition File with Discrete State Output Specification

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates
%CounterReset Count values above a threshold

properties
Threshold = 1

end

properties (DiscreteState)
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Count
end

methods (Access=protected)
function setupImpl(obj,~,~)

obj.Count = 0;
end

function resetImpl(obj)
obj.Count = 0;

end

function y = stepImpl(obj,u1,u2)
% Add to count if u1 is above threshold
% Reset if u2 is true
if (u2)

obj.Count = 0;
elseif (u1 > obj.Threshold)

obj.Count = obj.Count + 1;
end
y = obj.Count;

end

function N = getNumInputsImpl(~)
N = 2;

end

function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)
sz = [1 1];
dt = 'double';
cp = false;

end
function dataout = getOutputDataTypeImpl(~)

dataout = 'double';
end
function sizeout = getOutputSizeImpl(~)

sizeout = [1 1];
end
function cplxout = isOutputComplexImpl(~)

cplxout = false;
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end
function fixedout = isOutputFixedSizeImpl(~)

fixedout = true;
end

end
end

See Also matlab.system.mixin.Propagates | getDiscreteStateSpecificationImpl
|

Concepts • “What Are Mixin Classes?” on page 10-77
• “Subclassing Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 10-76
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Use Update and Output for Nondirect Feedthrough
This example shows how to implement nondirect feedthrough
for a System object using the updateImpl, outputImpl and
isInputDirectFeedthroughImpl methods. In nondirect feedthrough, the
object’s outputs depend only on the internal states and properties of the
object, rather than the input at that instant in time. You use these methods to
separate the output calculation from the state updates of a System object. This
enables you to use that object in a feedback loop and prevent algebraic loops.

Subclass from the Nondirect Mixin Class

To use the updateImpl, outputImpl, and isInputDirectFeedthroughImpl
methods, you must subclass from both the matlab.System base class and
the Nondirect mixin class.

classdef IntegerDelaySysObj < matlab.System & ...
matlab.system.mixin.Nondirect

Implement Updates to the Object

Implement an updateImpl method to update the object with previous inputs.

methods(Access=protected)
function updateImpl(obj,u)

obj.PreviousInput = [u obj.PreviousInput(1:end-1)];
end

end

Implenent Outputs from Object

Implement an outputImpl method to output the previous, not the current
input.

methods(Access=protected)
function [y] = outputImpl(obj, ~)

y = obj.PreviousInput(end);
end

end

Implement Whether Input Is Direct Feedthrough
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Implement an isInputDirectFeedthroughImpl method to indicate that the
input is nondirect feedthrough.

methods(Access=protected)
function flag = isInputDirectFeedthroughImpl(~,~)

flag = false;
end

end

Complete Class Definition File with Update and Output

classdef intDelaySysObj < matlab.System &...
matlab.system.mixin.Nondirect &...
matlab.system.mixin.CustomIcon

%intDelaySysObj Delay input by specified number of samples.

properties
InitialOutput = 0;

end
properties (Nontunable)

NumDelays = 1;
end
properties(DiscreteState)

PreviousInput;
end

methods(Access=protected)
function validatePropertiesImpl(obj)

if ((numel(obj.NumDelays)>1) || (obj.NumDelays <= 0))
error('Number of delays must be positive non-zero scalar value.

end
if (numel(obj.InitialOutput)>1)

error('Initial Output must be scalar value.');
end

end

function setupImpl(obj, ~)
obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

end

function resetImpl(obj)
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obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;
end

function [y] = outputImpl(obj, ~)
y = obj.PreviousInput(end);

end
function updateImpl(obj, u)

obj.PreviousInput = [u obj.PreviousInput(1:end-1)];
end
function flag = isInputDirectFeedthroughImpl(~,~)

flag = false;
end

end
end

See Also matlab.system.mixin.Nondirect | outputImpl | updateImpl |
isInputDirectFeedthroughImpl |

Concepts • “What Are Mixin Classes?” on page 10-77
• “Subclassing Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 10-76
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In this section...

“Setup Method Call Sequence” on page 10-73

“Step Method Call Sequence” on page 10-74

“Reset Method Call Sequence” on page 10-74

“Release Method Call Sequence” on page 10-75

Setup Method Call Sequence
This hierarchy shows the actions performed when you call the setup method.
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Step Method Call Sequence
This hierarchy shows the actions performed when you call the step method.

Reset Method Call Sequence
This hierarchy shows the actions performed when you call the reset method.
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Release Method Call Sequence
This hierarchy shows the actions performed when you call the release
method.

See Also setupImpl | stepImpl | releaseImpl | resetImpl |

Related
Examples

• “Release System Object Resources” on page 10-32
• “Reset Algorithm State” on page 10-19
• “Set Property Values at Construction Time” on page 10-16
• “Define Basic System Objects” on page 10-3

Concepts • “What Are System Object Methods?”
• “The Step Method”
• “Common Methods”
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System Object Input Arguments and ~ in Code Examples
All methods, except static methods, expect the System object handle as the
first input argument. You can use any name for your System object handle. In
many examples, instead of passing in the object handle, ~ is used to indicate
that the object handle is not used in the function. Using ~ instead of an object
handle prevents warnings about unused variables.
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What Are Mixin Classes?
Mixin classes are partial classes that you can combine in various combinations
to form desired behaviors using multiple inheritance. System objects are
composed of a base class, matlab.System and may include one or more mixin
classes. You specify the base class and mixin classes on the first line of your
class definition file.

The following mixin classes are available for use with System objects.

• matlab.system.mixin.CustomIcon — Defines a block icon for System
objects in the MATLAB System block

• matlab.system.mixin.FiniteSource — Adds the isDone method to
System objects that are sources

• matlab.system.mixin.Nondirect— Allows the System object, when used
in the MATLAB System block, to support nondirect feedthrough by making
the runtime callback functions, output and update available

• matlab.system.mixin.Propagates— Enables System objects to operate
in the MATLAB System block using the interpreted execution
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